Studies of the law and characteristics of population and land-use development of the Bejing-Tianjin-Tangshen region from 1153-1949 indicated that the land development process in the region is closely related with popu...Studies of the law and characteristics of population and land-use development of the Bejing-Tianjin-Tangshen region from 1153-1949 indicated that the land development process in the region is closely related with population change of the corresponding period In Jin Dynasty, population increased rapidly, in Yuan and Ming dynasties, population increased with a sustainability while from Qing Dynasty to the founding of the Republic, population increased substatially.Wasteland reclamation and cereals cultivation by garrison and farmers appeared in Jin Dyasty and reached climax in Ming Dynasty. Correlation analysis of poulation increase and cultivated area showed that they follow a linear equation which means that population increase and cultivated area expansion were at a similar rate.展开更多
The existing models of population distribution often focus on the region with a single city or even multiple centers, and lack the detailed explorations of the common and special type of urbanization areas with two ce...The existing models of population distribution often focus on the region with a single city or even multiple centers, and lack the detailed explorations of the common and special type of urbanization areas with two centers. Taking Beijing-Tianjin region of China, which is a distinct dual-nuclei metropolitan area in the world, as an example and choosing Landsat-5 TM image in 2005, population, etc. as the data, this paper devotes to comprehending and illustrating a model of Cassini growth of population between the two metropolitan cities through the research of spatial population distribution pattern, aided with RS and GIS techniques. Main technical processes include Kriging interpolation of the population data and character simulation of the Cassini ovals. According to the calculation of a/b, a key characteristic index of Cassini growth model, the spatial structures of population distribution were given. When a/b〈 1, it is a curve with two separated loops with a population density more than 3000 persons/km^2. When a/b=1, it is a lemniscate curve with a population density about 3000 persons/km^2. When 1〈a/b〈 √2, it is a dog-bone shaped concave curve with a population density between 500-3000 persons/km^2. When a/b= √2, it is an oblate curve with a population density about 500 persons/km^2. When a/b〉 √2, there is an oval-shaped convex curve with a population density less than 500 persons/km^2. The results show that owing to the combined action and influence of the regional dual-nuclei, the population distribution of Beijing-Tianjin region is in accord with Cassini model significantly. Therefore, there is Cassini growth of population between the two metropolitan cities in Beijing-Tianjin region. In addition, the process of Cassini growth has extraordinarily instructive significance for judging the development stages of the dual-nuclei metropolitan areas.展开更多
Hail is one of the important weather disasters that affects the Beijing-Tianjin(BT) region.To better understand and to improve the forecasting of hail events over the BT region,the precursor weather conditions for hai...Hail is one of the important weather disasters that affects the Beijing-Tianjin(BT) region.To better understand and to improve the forecasting of hail events over the BT region,the precursor weather conditions for hail based on 30 previous hail events were derived.It was found that the high-level trough and low-level cold front over the Mongolian region,the accumulated convective available potential energy,the decrease of the height of the 0℃-isotherm in the morning,and the persistence and intensification of these factors from morning to afternoon are valuable clues for forecasting the occurrence of hail events over the BT region.展开更多
Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation re...Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation restoration in the Beijing-Tianjin Sand Source Region(BTSSR) from 2000 to 2010 based on the rain use efficiency(RUE) trend in relation to the land cover. More than half of the BTSSR experienced a vegetation productivity increase from 2000 to 2010, with the increasing intensity being sensitive to the indicators chosen. A clear tendency towards smaller increasing areas was shown when using the net primary productivity(NPP, 51.30%) instead of the accumulated normalized difference vegetation index(59.30%). The short-term variation in the precipitation and intra-seasonal precipitation distribution had a great impact on the remote sensing-based vegetation productivity. However, the residual trends method(RESTREND) effectively eliminated this correlation, while incorporating the variance and skewness of the precipitation distribution increased the models′ ability to explain the vegetation productivity variation. The RUE combined with land cover dynamics was valid for the effectiveness assessment of the ecological engineering projects on vegetation restoration. Particularly, the result based on growing season accumulated normalized difference vegetation index(ΣNDVI) residuals was the most effective, showing that 47.39% of the BTSSR experienced vegetation restoration from 2000 to 2010. The effectiveness of the ecological engineering projects differed for each subarea and was proportional to the strength of ecological engineering. The water erosion region dominated by woodland showed the best restoration, followed by the wind-water erosion crisscross regions, while the wind erosion regions dominated by grassland showed the worst effect. Seriously degraded regions still cover more area in the BTSSR than restored regions. Therefore, more future effort should be put in restoring degraded land.展开更多
This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity i...This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity is accomplished by the principle of least squares in functional space. The computation is carried out in two steps. The first step is to inverse the shape of 3 D interface; while the second step is to do 3 D velocity inversion by distributing the remaining residual errors of travel time in accordance with their weights. The data of seismic sounding in the Tangshan Luanxian seismic region are processed, from which the 3 D structural form in depth of the Tangshan seismic region and the 3 D velocity distribution in the crust below the Tangshan Luanxian seismic region are obtained. The result shows that the deep 3 D structure in the Tangshan seismic region trends NE on the whole and the structure sandwiched between the NE trending Fengtai Yejituo fault and the NE trending Tangshan fault is an uplifted zone of the Moho. In the 3 D velocity structure of middle lower crust below that region, there is an obvious belt of low velocity anomaly to exist along the NE trending Tangshan fault, the position of which tallies with that of the Tangshan seismicity belt. The larger block of low velocity anomaly near Shaheyi corresponds to a denser earthquake distribution. In that region, there is an NW trending belt of high velocity anomaly, probably a buried fault zone. The lower crust below the epicentral region of the Tangshan M S=7.8 earthquake is a place where the NE trending belt of low velocity anomaly meets the NW trending belt of high velocity anomaly. The two sets of structures had played an important role in controlling the preparation and occurrence of the M S=7.8 Tangshan earthquake.展开更多
Using the seismic records of 83 temporary and 17 permanent broadband seismic stations deployed in Tangshan earthquake region and its adjacent areas(39°N–41.5°N,115.5°E–119.5°E),we conducted a non...Using the seismic records of 83 temporary and 17 permanent broadband seismic stations deployed in Tangshan earthquake region and its adjacent areas(39°N–41.5°N,115.5°E–119.5°E),we conducted a nonlinear joint inversion of receiver functions and surface wave dispersion.We obtained some detailed information about the Tangshan earthquake region and its adjacent areas,including sedimentary thickness,Moho depth,and crustal and upper mantle S-wave velocity.Meanwhile,we also obtained the vP/vS structure along two sections across the Tangshan region.The results show that:(1)the Moho depth ranges from 30 km to 38 km,and it becomes shallower from Yanshan uplift area to North China basin;(2)the thickness of sedimentary layer ranges from 0 km to 3 km,and it thickens from Yanshan uplift region to North China basin;(3)the S-wave velocity structure shows that the velocity distribution of the upper crust has obvious correlation with the surface geological structure,while the velocity characteristics of the middle and lower crust are opposite to that of the upper crust.Compared with the upper crust,the heterogeneity of the middle and lower crust is more obvious;(4)the discontinuity of Moho on the two sides of Tangshan fault suggests that Tangshan fault cut the whole crust,and the low vS and high vP/vS beneath the Tangshan earthquake region may reflect the invasion of mantle thermal material through Tangshan fault.展开更多
Dominated by an arid and semiarid continental climate,the Beijing-Tianjin Sandstorm Source Region(BTSSR)is a typical ecologically fragile region with frequently occurring droughts.To provide information for regional v...Dominated by an arid and semiarid continental climate,the Beijing-Tianjin Sandstorm Source Region(BTSSR)is a typical ecologically fragile region with frequently occurring droughts.To provide information for regional vegetation protection and drought prevention,we assessed the relations between vegetation cover change(measured by the Normalized Difference Vegetation Index,NDVI)and the Standardized Precipitation Evapotranspiration Index(SPEI)at different time-scales,in different growth stages,in different subregions and for different vegetation types based on the Pearson's correlation coefficient in the BTSSR from 2000 to 2017.Results showed that 88.19%of the vegetated areas experienced increased NDVI in the growing season;48.3%of the vegetated areas experi-enced significantly increased NDVI(P<0.05)and were mainly in the south of the BTSSR.During the growing season,a wetter climate contributed to the increased vegetation cover from 2000 to 2017,and NDVI anomalies were closely related to SPEI.The maximum correlation coefficient in the growing season(Rmax)was significantly positive(P<0.05)in 97.84%of the total vegetated areas.In the vegetated areas with significantly positive Rmax,pixels with short time-scales(1-3 mon)accounted for the largest proportion(33.9%).The sensitivity of vegetation to the impact of drought rose first and then decreased in the growing season,with a peak in July.Compared with two subregions in the south,subregions in the north of the BTSSR were more sensitive to the impacts of drought variations,especially in the Xilingol Plateau and Wuzhumuqin Basin.All four major vegetation types were sensitive to the effects of drought variations,especially grasslands.The time-scales of the most impacting droughts varied with growth stages,regions,and vegetation types.These results can help us understand the relations between vegetation and droughts,which are important for ecological restoration and drought prevention.展开更多
On the basis of overall analysis, this Paper, taking Beijing-Tianjin-Tangshan region as an example, tries to find out main environmental problems caused by water resources development and to discuss the mitigaive meas...On the basis of overall analysis, this Paper, taking Beijing-Tianjin-Tangshan region as an example, tries to find out main environmental problems caused by water resources development and to discuss the mitigaive measures of the environmental impacts. The Paper, by means of Analytical Hierarchy Process (AHP, builds a multiple-hierarchy decision-making model including godl, water resources, environmental impact factors and mitigative measures. This study is very significant for alleviating and solving the problems of water resources-environmental system in the region.展开更多
本文分析了京津唐张地区1985~2003年详实的重复重力测量资料,重力变化的图像显示该地区的重力变化具有明显的区域性特征;最为显著的变化是测网南部地区出现的较大范围重力增加,增加幅值在(100~300)×10^(-8)m·s^(-2)之间...本文分析了京津唐张地区1985~2003年详实的重复重力测量资料,重力变化的图像显示该地区的重力变化具有明显的区域性特征;最为显著的变化是测网南部地区出现的较大范围重力增加,增加幅值在(100~300)×10^(-8)m·s^(-2)之间,从可搜集到的高程及地下水资料分析,造成这一变化的主要原因是该地区大量开采地下流体而引起的大面积地面沉降;测网北部山区重力趋势性减小,19年减小幅值约30×10^(-87)m·s^(-2),与香山绝对重力点的变化量相当,高程及地下水对此种趋势的影响不大,大面积山区继承性、同步性的构造运动可能是造成地表重力趋势性变化的主要原因;而东部地区重力变化的明显特征是1990年6月至1994年6月间有一重力的快速下降然后上升过程,这可能是与1995年10月滦县 M 5.9地震有关的重力变化.相比之下地下水位的变化对重力趋势的影响较微弱.展开更多
文摘Studies of the law and characteristics of population and land-use development of the Bejing-Tianjin-Tangshen region from 1153-1949 indicated that the land development process in the region is closely related with population change of the corresponding period In Jin Dynasty, population increased rapidly, in Yuan and Ming dynasties, population increased with a sustainability while from Qing Dynasty to the founding of the Republic, population increased substatially.Wasteland reclamation and cereals cultivation by garrison and farmers appeared in Jin Dyasty and reached climax in Ming Dynasty. Correlation analysis of poulation increase and cultivated area showed that they follow a linear equation which means that population increase and cultivated area expansion were at a similar rate.
基金Under the auspices of National High-Tech Research and Development Program of China(863 Program)(No. 2007AAl22235)National Natural Science Foundation ofChina(No.40471058)
文摘The existing models of population distribution often focus on the region with a single city or even multiple centers, and lack the detailed explorations of the common and special type of urbanization areas with two centers. Taking Beijing-Tianjin region of China, which is a distinct dual-nuclei metropolitan area in the world, as an example and choosing Landsat-5 TM image in 2005, population, etc. as the data, this paper devotes to comprehending and illustrating a model of Cassini growth of population between the two metropolitan cities through the research of spatial population distribution pattern, aided with RS and GIS techniques. Main technical processes include Kriging interpolation of the population data and character simulation of the Cassini ovals. According to the calculation of a/b, a key characteristic index of Cassini growth model, the spatial structures of population distribution were given. When a/b〈 1, it is a curve with two separated loops with a population density more than 3000 persons/km^2. When a/b=1, it is a lemniscate curve with a population density about 3000 persons/km^2. When 1〈a/b〈 √2, it is a dog-bone shaped concave curve with a population density between 500-3000 persons/km^2. When a/b= √2, it is an oblate curve with a population density about 500 persons/km^2. When a/b〉 √2, there is an oval-shaped convex curve with a population density less than 500 persons/km^2. The results show that owing to the combined action and influence of the regional dual-nuclei, the population distribution of Beijing-Tianjin region is in accord with Cassini model significantly. Therefore, there is Cassini growth of population between the two metropolitan cities in Beijing-Tianjin region. In addition, the process of Cassini growth has extraordinarily instructive significance for judging the development stages of the dual-nuclei metropolitan areas.
基金supported by the Scientific Research Foundation for Returned Scholars of the State Personnel Ministry of China,the Research Foundation of Institute of Urban Meteorology, CMA (Grant No. UMRF 200809)the R&D Special Fund for Public Welfare Industry (Meteorology) (Grant No. GYHY200906003)the National Basic Research Program of China (Grant No. 2009CB421406)
文摘Hail is one of the important weather disasters that affects the Beijing-Tianjin(BT) region.To better understand and to improve the forecasting of hail events over the BT region,the precursor weather conditions for hail based on 30 previous hail events were derived.It was found that the high-level trough and low-level cold front over the Mongolian region,the accumulated convective available potential energy,the decrease of the height of the 0℃-isotherm in the morning,and the persistence and intensification of these factors from morning to afternoon are valuable clues for forecasting the occurrence of hail events over the BT region.
基金Under the auspices of National Natural Science Foundation of China(No.41571421)National Science and Technology Major Project of China(No.21-Y30B05-9001-13/15)
文摘Aiming for the restoration of degraded ecosystems, many ecological engineering projects have been implemented around the world. This study investigates the ecological engineering project effectiveness on vegetation restoration in the Beijing-Tianjin Sand Source Region(BTSSR) from 2000 to 2010 based on the rain use efficiency(RUE) trend in relation to the land cover. More than half of the BTSSR experienced a vegetation productivity increase from 2000 to 2010, with the increasing intensity being sensitive to the indicators chosen. A clear tendency towards smaller increasing areas was shown when using the net primary productivity(NPP, 51.30%) instead of the accumulated normalized difference vegetation index(59.30%). The short-term variation in the precipitation and intra-seasonal precipitation distribution had a great impact on the remote sensing-based vegetation productivity. However, the residual trends method(RESTREND) effectively eliminated this correlation, while incorporating the variance and skewness of the precipitation distribution increased the models′ ability to explain the vegetation productivity variation. The RUE combined with land cover dynamics was valid for the effectiveness assessment of the ecological engineering projects on vegetation restoration. Particularly, the result based on growing season accumulated normalized difference vegetation index(ΣNDVI) residuals was the most effective, showing that 47.39% of the BTSSR experienced vegetation restoration from 2000 to 2010. The effectiveness of the ecological engineering projects differed for each subarea and was proportional to the strength of ecological engineering. The water erosion region dominated by woodland showed the best restoration, followed by the wind-water erosion crisscross regions, while the wind erosion regions dominated by grassland showed the worst effect. Seriously degraded regions still cover more area in the BTSSR than restored regions. Therefore, more future effort should be put in restoring degraded land.
文摘This paper studies the computation method of two step inversion of interface and velocity in a region. The 3 D interface is described by a segmented incomplete polynomial; while the reconstruction of 3 D velocity is accomplished by the principle of least squares in functional space. The computation is carried out in two steps. The first step is to inverse the shape of 3 D interface; while the second step is to do 3 D velocity inversion by distributing the remaining residual errors of travel time in accordance with their weights. The data of seismic sounding in the Tangshan Luanxian seismic region are processed, from which the 3 D structural form in depth of the Tangshan seismic region and the 3 D velocity distribution in the crust below the Tangshan Luanxian seismic region are obtained. The result shows that the deep 3 D structure in the Tangshan seismic region trends NE on the whole and the structure sandwiched between the NE trending Fengtai Yejituo fault and the NE trending Tangshan fault is an uplifted zone of the Moho. In the 3 D velocity structure of middle lower crust below that region, there is an obvious belt of low velocity anomaly to exist along the NE trending Tangshan fault, the position of which tallies with that of the Tangshan seismicity belt. The larger block of low velocity anomaly near Shaheyi corresponds to a denser earthquake distribution. In that region, there is an NW trending belt of high velocity anomaly, probably a buried fault zone. The lower crust below the epicentral region of the Tangshan M S=7.8 earthquake is a place where the NE trending belt of low velocity anomaly meets the NW trending belt of high velocity anomaly. The two sets of structures had played an important role in controlling the preparation and occurrence of the M S=7.8 Tangshan earthquake.
基金This research is supported by Spark Program of Earthquake Science(No.XH18065Y)National Natural Science Foundation of China(Nos.41774066 and 41604049)。
文摘Using the seismic records of 83 temporary and 17 permanent broadband seismic stations deployed in Tangshan earthquake region and its adjacent areas(39°N–41.5°N,115.5°E–119.5°E),we conducted a nonlinear joint inversion of receiver functions and surface wave dispersion.We obtained some detailed information about the Tangshan earthquake region and its adjacent areas,including sedimentary thickness,Moho depth,and crustal and upper mantle S-wave velocity.Meanwhile,we also obtained the vP/vS structure along two sections across the Tangshan region.The results show that:(1)the Moho depth ranges from 30 km to 38 km,and it becomes shallower from Yanshan uplift area to North China basin;(2)the thickness of sedimentary layer ranges from 0 km to 3 km,and it thickens from Yanshan uplift region to North China basin;(3)the S-wave velocity structure shows that the velocity distribution of the upper crust has obvious correlation with the surface geological structure,while the velocity characteristics of the middle and lower crust are opposite to that of the upper crust.Compared with the upper crust,the heterogeneity of the middle and lower crust is more obvious;(4)the discontinuity of Moho on the two sides of Tangshan fault suggests that Tangshan fault cut the whole crust,and the low vS and high vP/vS beneath the Tangshan earthquake region may reflect the invasion of mantle thermal material through Tangshan fault.
基金Under the auspices of National Natural Science Foundation of China(No.41807177,41701017)the Pioneer‘Hundred Talents Program’of Chinese Academy of Sciences。
文摘Dominated by an arid and semiarid continental climate,the Beijing-Tianjin Sandstorm Source Region(BTSSR)is a typical ecologically fragile region with frequently occurring droughts.To provide information for regional vegetation protection and drought prevention,we assessed the relations between vegetation cover change(measured by the Normalized Difference Vegetation Index,NDVI)and the Standardized Precipitation Evapotranspiration Index(SPEI)at different time-scales,in different growth stages,in different subregions and for different vegetation types based on the Pearson's correlation coefficient in the BTSSR from 2000 to 2017.Results showed that 88.19%of the vegetated areas experienced increased NDVI in the growing season;48.3%of the vegetated areas experi-enced significantly increased NDVI(P<0.05)and were mainly in the south of the BTSSR.During the growing season,a wetter climate contributed to the increased vegetation cover from 2000 to 2017,and NDVI anomalies were closely related to SPEI.The maximum correlation coefficient in the growing season(Rmax)was significantly positive(P<0.05)in 97.84%of the total vegetated areas.In the vegetated areas with significantly positive Rmax,pixels with short time-scales(1-3 mon)accounted for the largest proportion(33.9%).The sensitivity of vegetation to the impact of drought rose first and then decreased in the growing season,with a peak in July.Compared with two subregions in the south,subregions in the north of the BTSSR were more sensitive to the impacts of drought variations,especially in the Xilingol Plateau and Wuzhumuqin Basin.All four major vegetation types were sensitive to the effects of drought variations,especially grasslands.The time-scales of the most impacting droughts varied with growth stages,regions,and vegetation types.These results can help us understand the relations between vegetation and droughts,which are important for ecological restoration and drought prevention.
文摘On the basis of overall analysis, this Paper, taking Beijing-Tianjin-Tangshan region as an example, tries to find out main environmental problems caused by water resources development and to discuss the mitigaive measures of the environmental impacts. The Paper, by means of Analytical Hierarchy Process (AHP, builds a multiple-hierarchy decision-making model including godl, water resources, environmental impact factors and mitigative measures. This study is very significant for alleviating and solving the problems of water resources-environmental system in the region.
文摘本文分析了京津唐张地区1985~2003年详实的重复重力测量资料,重力变化的图像显示该地区的重力变化具有明显的区域性特征;最为显著的变化是测网南部地区出现的较大范围重力增加,增加幅值在(100~300)×10^(-8)m·s^(-2)之间,从可搜集到的高程及地下水资料分析,造成这一变化的主要原因是该地区大量开采地下流体而引起的大面积地面沉降;测网北部山区重力趋势性减小,19年减小幅值约30×10^(-87)m·s^(-2),与香山绝对重力点的变化量相当,高程及地下水对此种趋势的影响不大,大面积山区继承性、同步性的构造运动可能是造成地表重力趋势性变化的主要原因;而东部地区重力变化的明显特征是1990年6月至1994年6月间有一重力的快速下降然后上升过程,这可能是与1995年10月滦县 M 5.9地震有关的重力变化.相比之下地下水位的变化对重力趋势的影响较微弱.