The Atmospheric Environmental Monitoring Network successfully undertook the task of monitoring the atmospheric quality of Beijing and its surrounding area during the 2008 Olympics. The results of this monitoring show ...The Atmospheric Environmental Monitoring Network successfully undertook the task of monitoring the atmospheric quality of Beijing and its surrounding area during the 2008 Olympics. The results of this monitoring show that high concentrations of PM2.5 pollution exhibited a regional pattern during the monitoring period (1 June-30 October 2008). The PM2.5 mass concentrations were 53 μg m-3, 66 p.g m-3, and 82 μg m-3 at the background site, in Beijing, and in the Beijing-Tianjin-Hebei urban agglomerations, respectively. The PM2.5 levels were lowest during the 2008 Olympic Games (8-24 August): 35μg m-3 at the background site, 42 μg m-3 in Beijing and 57 μg m-3 in the region. These levels represent decreases of 49%, 48% and 56%, respectively, compared to the prophase mean concentration before the Olympic Games. Emission control measures contributed 62% 82% of the declines observed in Beijing, and meteorological conditions represented 18%-38%. The concentration of fine particles met the goals set for a "Green Olympics."展开更多
As the space carrier of the construction of ecological civilization, land's green and efficient utilization is an important guarantee for realizing national sustainable development. Based on traditional land evalu...As the space carrier of the construction of ecological civilization, land's green and efficient utilization is an important guarantee for realizing national sustainable development. Based on traditional land evaluation, this paper scientifically defines the green land use, puts land as one of the production factors, and brings energy consumption, environmental pollution, etc. into the input-output system to measure the green land utilization efficiency of the urban construction land of Beijing-TianjinHebei Urban Agglomeration from 2006 to 2016. The study shows that the overall efficiency variation of the urban agglomeration is related with the land and environment policies. Efficiency of 2016 is higher than that of 2006, and energy and environment are the principal factors affecting the green land use. The efficiency of each city is positively correlated with its economic development, negatively correlated with the construction land expansion. Efficiency gaps in different cities are expanding.There is positive correlation with overall weak space between cities, and the partial spatial agglomeration phenomenon appears. Therefore, the green land use efficiency could be improved by improving land utilization efficiency, coordinating economic growth of construction land utilization with environmental protection and taking feasible ways to transregional renovation of the stock ecological land utilization, etc.展开更多
The internal technological innovation(IT)and external technological cooperation(ET)of a city are crucial drivers for its green development(GD).Although previous studies have extensively explored the effect of IT on GD...The internal technological innovation(IT)and external technological cooperation(ET)of a city are crucial drivers for its green development(GD).Although previous studies have extensively explored the effect of IT on GD,IT,ET and GD have not been integrated into the same framework to explore their relationship.Using panel data of 13 cities in the Beijing-Tianjin-Hebei urban agglomeration,this study revealed the spatio-temporal evolution of GD and analyzed the effects of IT and ET on GD from the perspective of baseline impact,spatial effect and synergy effect.Empirical results demonstrate that the level of urban GD has upgraded and the difference in GD between cities has been narrowed though it decreases from the middle to both ends.IT significantly promotes the growth of GD while ET has an inverted U-shaped effect on GD.Under the influence of spatial spillover,IT has a U-shaped effect on the GD of neighboring cities while the effect of ET on neighboring GD is not significant.Additionally,the interaction between IT and ET has not been effective,leading to an insignificant synergy effect on GD.These findings will provide reference for taking rational advantage of IT and ET to facilitate urban GD.展开更多
Green development is a critical component of sustainable tourism, which prioritizes a comprehensive, ecologically-friendly, and people-oriented approach to development. This study presents a case study of the Beijing...Green development is a critical component of sustainable tourism, which prioritizes a comprehensive, ecologically-friendly, and people-oriented approach to development. This study presents a case study of the Beijing–Tianjin–Hebei(BTH) urban agglomeration from 2001 to 2021 to analyze the spatio-temporal evolution characteristics and influencing factors of tourism green development efficiency(TGDE). The study defines the concept of tourism green development and constructs an evaluation system, which is used to explore the internal differences and spatial patterns of TGDE within the urban agglomeration. The methodological approach includes the SBM–Undesirable model, kernel density estimation, Markov chain, and spatial gravity model. The findings indicate that the TGDE in the BTH urban agglomeration is generally favorable, displaying a temporal phase of “rising–declining–rising.” However, the study observes lower TGDE in tourism node cities compared to tourism regional center cities and tourism core hub cities. The non-equilibrium degree of each region indicates significant spatio-temporal evolution patterns and internal differences among the three regions, with a spatially decreasing distribution of “core hub-regional center-node city.” The TGDE in the urban agglomeration experienced an evolutionary trend of “first decreasing and then increasing” with apparent endogenous evolution characteristics. The linkage pattern of green development efficiency in the tourism industry between cities is relatively stable. Furthermore,neighboring cities generally exhibit a higher spatial connectivity strength of green development efficiency in the tourism industry compared to non-neighboring cities. Economic development level, industrial structure, and science and education level are identified as key factors that affect TGDE. However, the study finds that the factors influencing TGDE in tourism core hub cities, tourism regional center cities, and tourism node cities differ somewhat. Economic development level, industrial structure, science and education level, openness, and government regulation impact TGDE in tourism core hub cities and tourism regional center cities, while economic development level, industrial structure, and tourism resource endowment are the primary factors affecting TGDE in tourism node cities. The study provides policymakers and tourism practitioners with valuable insights into enhancing the green development of the tourism industry in the BTH urban agglomeration and other similar regions.Corresponding policy recommendations based on the results are proposed to improve the TGDE of the tourism industry in these regions, promote sustainable tourism development,improve the quality of life of local residents, and protect the ecological environment.展开更多
We use emergy-based urban metabolism analysis in this study to investigate the local coupling and telecoupling between urbanization and the eco-environment in the Beijing-Tianjin-Hebei urban agglomeration. Our analysi...We use emergy-based urban metabolism analysis in this study to investigate the local coupling and telecoupling between urbanization and the eco-environment in the Beijing-Tianjin-Hebei urban agglomeration. Our analysis encompasses the last 35 years spanning the period between 1980 and 2014. In addition, we analyze urban metabolic efficiency and environmental pressure in these couplings. There are three main conclusions of this study. First, we show that the total metabolic emergy value of the Beijing-Tianjin-Hebei urban agglomeration has increased over the last 35 years, and that external elements have replaced internal ones as the leading contributors to urban metabolism in this region. The proportion of metabolic emergy derived from external elements increased from 30.87% in 1980 to 67.43% in 2014. The emergy extroversion ratio has continued to increase over our study period, while the development of this urban agglomeration had become progressively and more heavily reliant on external elements. Second, over the study period, the metabolic emergy intensity of elements of local coupling and telecoupling in the Beijing-Tianjin-Hebei urban agglomeration has declined at an accelerating rate, from 1.15×10^(21) Sej/100 million RMB in1980 to 9.69×10^(19) Sej/100 million RMB in 2014. This reflects a continuous increase in the economic efficiency of this area.Correspondingly, emergy use per capita increased from 7.8×10^(15) Sej/person in 1980 to 5.83×10^(16) Sej/person in 2014, suggesting a gradual rise in the level of social welfare in this urban agglomeration. However, we also observed a consistently elevated environmental loading ratio(ELR) in our analysis in terms of metabolism of local coupling and telecoupling elements. This result indicates that environmental pressure has also increased constantly within the Beijing-Tianjin-Hebei urban agglomeration. Third,our analysis shows that the ELR of metabolic emergy from internal elements increased from 8.30 in 1980 to 43.46 in 2014, while the ratio from external elements increased from 4.15 to 92.03. Thus, we quantitatively investigated the dependency of development within this urban agglomeration on external elements as well as the resultant environmental load. The conclusions of this study provide the basis for quantitative policy-making in the Beijing-Tianjin-Hebei region, optimizing economic structures, improving economic efficiency, controlling environmental pollution, and promoting the coordinated development of this region.展开更多
The natural formation and development of urban agglomerations is a process in which core cities continue to unite their neighboring cities to enhance sustainability for their own sustainable development.The upgrade me...The natural formation and development of urban agglomerations is a process in which core cities continue to unite their neighboring cities to enhance sustainability for their own sustainable development.The upgrade mechanism of sustainable development urban agglomeration is a nonlinear composite upgrade curve that is a function of time,increasing with the number of cities.In this paper,the sustainable upgrade function curve,upgrade rate,and upgrade speed of urban agglomerations were solved using a geometrical derivation,and the index system for measuring the upgrade capability of sustainable development of urban agglomerations was established.The dynamic change in economic sustainable upgrade capability,social sustainable upgrade capability,environmental sustainable upgrade capability,and comprehensive sustainable upgrade capability of a Beijing-Tianjin-Hebei urban agglomeration from 2000 to 2015 was measured by technique for order preference by similarity to an ideal solution and a grey correlation method,and a comprehensive,intercity unite strength model and a unite threshold calculation method for urban agglomerations were established.The research shows that the economic sustainable upgrade capability,social sustainable upgrade capability,environmental sustainable upgrade capability,and comprehensive sustainable upgrade capability of the Beijing-Tianjin-Hebei urban agglomeration all show a wave-like rising trend.The average annual upgrade speeds during 2000-2015 are,respectively,2.4%.1.67%,1.1%,and 1.74%,with the intercity comprehensive unite strength of urban agglomerations maintaining a general increase;but there is a limit to the joint threshold.From 2000 to 2015,as the core city of the Beijing-Tianjin-Hebei urban agglomeration,Beijing,to enhance its sustainable upgrade capability,jointly developed with Tianjin,Langfang,and Baoding before 2000,Tangshan in 2002,Cangzhou in 2009,Zhangjiakou and Shijiazhuang in 2012,and Chengde in 2014.By 2015,the comprehensive unite strength between Beijing and four cities(Handan,Qinhuangdao,Hengshui,and Xingtai) was still lower than the unite threshold of 6.14.These four cities are relatively far from Beijing,and offer no substantial contribution to the sustainable upgrade capability of Beijing.Through multiple fittings of the upgrade curve using the long-term sequence index of the comprehensive sustainable upgrade capability of Beijing(the core city of the Beijing-Tianjin-Hebei urban agglomeration) from 2000 to 2015,it was found that the simulated curve of the comprehensive sustainable upgrade function of the agglomeration was very similar to the curve of the comprehensive sustainable upgrade capability,which indicates that the simulation results are satisfactory.The future comprehensive sustainable upgrade capability of the agglomeration can be analyzed and predicted by the comprehensive sustainable upgrade function model.This study provides quantitative decision-supporting evidence for promoting the coordinated development of the Beijing-TianjinHebei urban agglomeration and provides theoretical guidance and algorithms for determining the number of cities joined with the sustainable development of national urban agglomerations.展开更多
Research on the carbon budget and zoning for carbon compensation in major functional zones(MFZs)is important for formulating strategies for low-carbon development for each functional zone,promoting the collaborative g...Research on the carbon budget and zoning for carbon compensation in major functional zones(MFZs)is important for formulating strategies for low-carbon development for each functional zone,promoting the collaborative governance of the regional ecological environment,and achieving high-quality development.Such work can also contribute to achieving peak emissions and carbon neutrality.This paper constructs a theoretical framework for the carbon budget and carbon compensation from the perspective of the MFZ,uses 157 county-level units of the Beijing-Tianjin-Hebei urban agglomeration(BTHUA)as the study area,and introduces the concentration index,normalized revealed comparative advantage index,and Self Organizing Mapping-K-means(SOM-K-means)model to examine spatio-temporal variations in the carbon budget and carbon compensation zoning for the BTHUA from the perspective of MFZs.The authors propose a scheme for the spatial minimization of carbon emissions as oriented by low-carbon development.The results show that:(1)From 2000 to 2017,the carbon budget exhibited an upward trend of volatility,its centralization index was higher than the“warning line”of 0.4,and large regional differences in it were noted on the whole.(2)There were significant regional differences in the carbon budget,and carbon emissions exhibited a core-periphery spatial pattern,with a high-value center at Beijing-Tianjin-Tangshan that gradually decreased as it moved outward.However,the spatial pattern of carbon absorption tended to be stable,showing an inverted“U-shaped”pattern.It was high in the east,north,and west,and was low in the middle and the south.(3)The carbon budget was consistent with the strategic positioning of the MFZ,and the optimized development zone and key development zone were the main pressure-bearing areas for carbon emissions,while the key ecological functional zone was the dominant zone of carbon absorption.The difference in the centralization index of carbon absorption among the functional zones was smaller than that in the centralization index of carbon emissions.(4)There were 53 payment areas,64 balanced areas,and 40 obtaining areas in the study area.Nine types of carbon compensation zones were finally formed in light of the strategic objectives of the MFZ,and directions and strategies for low-carbon development are proposed for each type.(5)It is important to strengthen research on the carbon balance and horizontal carbon compensation at a microscopic scale,enrich the theoretical framework of regional carbon compensation,integrate it into the carbon trading market,and explore diversified paths for achieving peak emissions and carbon neutrality.展开更多
Under China's innovation-driven development strategy, venture capital has become an important driving force in urban agglomeration integration and collaborative innovation. This paper uses social network analysis ...Under China's innovation-driven development strategy, venture capital has become an important driving force in urban agglomeration integration and collaborative innovation. This paper uses social network analysis to analyze spatiotemporal differences of venture capital in the Beijing-Tianjin-Hebei urban agglomeration for the period 2005–2015. A gravity model and panel data regression model are used to reveal the influencing factors on spatiotemporal differences in venture capital in the region. This study finds that there is a certain cyclical fluctuation and uneven differentiation in the venture capital network in the Beijing-Tianjin-Hebei urban agglomeration in terms of total investment, and that the three centers of venture capital(Beijing, Shijiazhuang and Tangshan) have a stimulatory effect on surrounding cities; flows of venture capital between cities display certain networking rules, but they are slow to develop and strongly centripetal; there is a strong positive correlation between levels of information infrastructure development and economic development and venture capital investment; and places with relatively underdeveloped financial environments and service industries are less able to apply the fruits of innovation and entrepreneurship and to attract funds. This study can act as a reference for the Beijing-Tianjin-Hebei urban agglomeration in building a world-class super urban agglomeration with the best innovation capabilities in China.展开更多
High-quality development is the primary task of comprehensively building a socialist,modern country,as well as the primary task of building urban agglomerations in China.Based on the five development concepts,this pap...High-quality development is the primary task of comprehensively building a socialist,modern country,as well as the primary task of building urban agglomerations in China.Based on the five development concepts,this paper used the entropy method to measure the High Quality Development Index(HQDI)of the five major urban agglomerations.The results showed that the HQDI of the five major urban agglomerations shows a fluctuating upward trend.First,using the Dagum Gini coefficient to explore the sources of HQDI development differences in urban agglomerations,we found that the main source of HQDI differences in urban agglomerations was inter-regional differences,while intra-regional differences were not important.Second,kernel density estimation was used to test the dynamic evolution trend of HQDI within urban agglomerations.There was a polarisation phenomenon in the HQDI of urban agglomerations,such as the Pearl River Delta urban agglomeration and the Chengdu-Chongqing urban agglomeration.But overall,the degree of imbalance had decreased.Third,using geographic detectors to examine the driving factors of HQDI in urban agglomerations,we found that the main driving forces for improving HQDI in urban agglomerations were economic growth,artificial intelligence technology and fiscal decentralisation.All the interaction factors had greater explanatory power for the spatial differentiation of HQDI,which can be divided into two types:two-factor improvement and non-linear improvement.This study is conducive to improving and enriching the theoretical system for evaluating the high quality development of urban agglomerations,and provides policy references for promoting the high quality development of urban agglomerations.展开更多
The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure ...The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure of urban agglomeration in the Greater Bay Area through the use of social network analysis method.This is the inaugural application of big data based on location services in the study of urban agglomeration network structure,which represents a novel research perspective on this topic.The study reveals that the density of network linkages in the Greater Bay Area urban agglomeration has reached 100%,indicating a mature network-like spatial structure.This structure has given rise to three distinct communities:Shenzhen-Dongguan-Huizhou,Guangzhou-Foshan-Zhaoqing,and Zhuhai-Zhongshan-Jiangmen.Additionally,cities within the Greater Bay Area urban agglomeration play different roles,suggesting that varying development strategies may be necessary to achieve staggered development.The study demonstrates that large datasets represented by LBS can offer novel insights and methodologies for the examination of urban agglomeration network structures,contingent on the appropriate mining and processing of the data.展开更多
Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present an...Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present and future urban agglomerations contributes to the rational planning of these areas and enhances the well-being of their inhabitants.Here,we analyzed land use conversion in the Yangtze River Delta(YRD)urban agglomeration during 1990-2020 and discussed the spatiotemporal response and main drivers of changes in ecosystem service value(ESV).By considering the different development strategic directions described in land use planning policies,we predicted land use conversion and its impact on ESV using the Future Land Use Simulation(FLUS)model in three scenari-os in 2025 and 2030.Results show that:1)from 1990 to 2020,land use change is mainly manifested as the continuous expansion of con-struction land to cultivated land.Among the reduced cultivated land,82.2%were occupied by construction land.2)The land use types conversion caused a loss of 21.85 billion yuan(RMB)in ESV during 1990-2020.Moreover,the large reduction of cultivated land area led to the continuous decline of food production value,accounting for 13%of the total ESV loss.3)From 2020 to 2030,land use change will mainly focus on Yangzhou and Zhenjiang in central Jiangsu Province and Taizhou in southern Zhejiang Province.Under the BAU(natural development)and ED(cultivated land protection)scenarios,construction land expansion remains dominant.In contrast,under the EP(ecological protection)scenario,the areas of water bodies and forest land increase significantly.Among the different scenarios,ESV is highest in the EP scenario,making it the optimal solution for sustainable land use.It can be seen that the space use conflict among urban,agriculture and ecology is a key factor leading to ESV change in the urban agglomeration of Yangtze River Delta.There-fore,it is crucial to maintain spatial land use coordination.Our findings provide suggestions for scientific and rational land use planning for the urban agglomeration.展开更多
The continuous growth of urban agglomerations in China has increased their complexity as well as vulnerability. In this context, urban resilience is critical for the healthy and sustainable development of urban agglom...The continuous growth of urban agglomerations in China has increased their complexity as well as vulnerability. In this context, urban resilience is critical for the healthy and sustainable development of urban agglomerations. Focusing on the Beijing-Tianjin-Hebei(BTH) urban agglomeration, this study constructs an urban resilience evaluation system based on four subsystems: economy, society, infrastructure, and ecology. It uses the entropy method to measure the urban resilience of the BTH urban agglomeration from 2000 to 2018.Theil index, standard deviation ellipse, and gray prediction model GM(1,1) methods are used to examine the spatio-temporal evolution and dynamic simulation of urban resilience in this urban agglomeration. Our results show that the comprehensive evaluation index for urban resilience in the BTH urban agglomeration followed a steady upward trend from 2000 to 2018,with an average annual growth rate of 6.72%. There are significant differences in each subsystem’s contribution to urban resilience;overall, economic resilience is the main factor affecting urban resilience, with an average annual growth rate of 8.06%. Spatial differences in urban resilience in the BTH urban agglomeration have decreased from 2000 to 2018, showing the typical characteristic of being greater in the central core area and lower in the surrounding non-core areas. The level of urban resilience in the BTH urban agglomeration is forecast to continue increasing over the next ten years. However, there are still considerable differences between the cities. Policy factors will play a positive role in promoting the resilience level. Based on the evaluation results, corresponding policy recommendations are put forwar to provide scientific data support and a theoretical basis for the resilience construction of the BTH urban agglomeration.展开更多
This paper adopts the perspective of urban economic linkage and the modified urban economic gravity model to conduct a comparative analysis of the economic gravity among cities in China’s three major urban agglomerat...This paper adopts the perspective of urban economic linkage and the modified urban economic gravity model to conduct a comparative analysis of the economic gravity among cities in China’s three major urban agglomerations,including the Beijing-Tianjin-Hebei region,the Yangtze River Delta,and the Pearl River Delta.The results show that,despite the ever-tightening economic linkages among cities in the urban agglomerations,the development of the Beijing-Tianjin-Hebei region falls behind that of the Yangtze River Delta and the Pearl River Delta in terms of coordination,closeness,and balance.The economic linkages among cities in the Beijing-Tianjin-Hebei region are not as cohesive as they could be and display a significant“siphon effect”through Beijing and Tianjin as well as a prominently unidirectional economic flow.This study suggests that efforts should be put into directing the orderly flow of resources from Beijing and Tianjin to cities in Hebei and promoting a balanced economic flow among cities,thus facilitating the coordination of regional development.展开更多
Spatial structure of rural tourism in the urban agglomerations of Wuhan was analyzed by comprehensively studying relevant documents about rural tourism,and reviewing previous researches on the concept and spatial stru...Spatial structure of rural tourism in the urban agglomerations of Wuhan was analyzed by comprehensively studying relevant documents about rural tourism,and reviewing previous researches on the concept and spatial structure of rural tourism.Through investigating rural tourist resources in the study area,resource advantages and characteristics of 9 cities were introduced,and the Gini Coefficient was taken to quantitatively analyze spatial patterns of its rural tourist villages,the obviously imbalanced concentration of these villages was pointed out.By measuring connectivity and accessibility of regional spaces in the study area,its traffic connectivity was proved moderate,and accessibility of each tourist village and town was fine.Then an optimized spatial structure was proposed for the rural tourism development in Wuhan Urban Agglomerations,that is,"one core,one belt and three districts".展开更多
Characteristics of air pollution in Northeast China(NEC) received less research attention in the past comparing to other heavily polluted regions in China.Spatiotemporal variations of six criteria air pollutants(PM10,...Characteristics of air pollution in Northeast China(NEC) received less research attention in the past comparing to other heavily polluted regions in China.Spatiotemporal variations of six criteria air pollutants(PM10, PM2.5, SO2, NO2, O3 and CO) in Central Liaoning Urban Agglomeration(CLUA) and Harbin-Changchun Urban Agglomeration(HCUA) in NEC Plain were analyzed in this study based on three-year hourly observations of air pollutants and meteorological variables from 2015 to 2017.The results indicated that the annual mean concentrations of air pollutants are generally higher in the middle and southern regions in NEC Plain and lower in the northern region.Megacities such as Shenyang, Harbin and Changchun experience severe air pollution, with a three-year averaged air quality index(AQI) larger than 80, far exceeding the daily AQI standard at the first-level of 50 in China.The annual mean PM and SO2 concentrations decrease most significantly in NEC urban agglomerations from 2015 to 2017, followed by CO and NO2, while O3 shows a slight increasing trend.All the six pollutants exhibit obvious seasonal and diurnal variations, and these variations are dictated by local emission and meteorological conditions.PM2.5 and O3 concentrations in NEC urban agglomerations strongly depend on wind conditions.High O3 concentrations at different cities usually occur in presence of strong winds but are independent on wind direction(WD), while high PM2.5 is usually accompanied by weak winds and poor dispersion condition, and sometimes also occur when the northerly or southerly winds are strong.Regional transport of air pollutants between NEC urban agglomerations is common.A severe haze event on November 1–4, 2017 is examined to demonstrate the role of regional transport on pollution.展开更多
We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Ba...We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Based on energy consumption and high-quality land use data,we designed two scenarios to represent no-AHR and current-AHR conditions.By comparing the results of the two numerical experiments,changes of surface air temperature and precipitation due to AHR were quantified and analyzed.We concluded that AHR increases the temperature in these urbanized areas by about 0.5℃-1℃,and this increase is more pronounced in winter than in other seasons.The inclusion of AHR enhances the convergence of water vapor over urbanized areas.Together with the warming of the lower troposphere and the enhancement of ascending motions caused by AHR,the average convective available potential energy in urbanized areas is increased.Rainfall amounts in summer over urbanized areas are likely to increase and regional precipitation patterns to be altered to some extent.展开更多
Urban agglomeration research has received increasing attention in China’s national development strategies, and has become a hot topic in academic research. This study develops a theoretical framework that explores th...Urban agglomeration research has received increasing attention in China’s national development strategies, and has become a hot topic in academic research. This study develops a theoretical framework that explores the formation mechanism and expansion process of urban agglomerations from the perspective of industrial evolution, and identifies the development issues and their causes by taking Yangtze Delta and Beijing-Tianjin-Hebei urban agglomerations as case studies. In the process of urban agglomeration formation within a free market, as has happened in Yangtze Delta region, the central city develops first, its secondary industry is then transferred to its neighboring cities, and the work division and cooperation with the neighboring cities is gradually established. However, in the 1990 s, aiming to become an international metropolis, Beijing implemented a series of administrative policies to encourage the reduction of the secondary industry and the development of the tertiary industry, before its secondary industry were fully developed and transferred to its neighboring cities. This delayed the integration process and the development of the Beijing-Tianjin-Hebei urban agglomeration. This study builds a good foundation for the construction of the theoretical system’s urban agglomeration study, and provides references for decision making in an urban agglomeration development.展开更多
Urban agglomerations are spatial entities that promote the development of ‘new urbanization' processes within China. In this context, the concept of ‘multiscale urban agglomeration spaces' encompasses three ...Urban agglomerations are spatial entities that promote the development of ‘new urbanization' processes within China. In this context, the concept of ‘multiscale urban agglomeration spaces' encompasses three linked levels: macroscale urban agglomerations, mesoscale cities, and microscale urban centers. Applying a series of multidisciplinary integrated research methods drawn from geography, urban planning, and architecture, this paper reveals two intensive utilization laws that can be generalized to apply to multiscale urban agglomeration spaces, top-to-bottom ‘positive transmission' linkage and inside-to-outside ‘negative transmission' movement. This paper also proposes optimization transmission theory and policy decision technical pathways that can be applied to these three urban agglomeration spatial scales. Specific technical pathways of transmission include intensive expansion and simulated decision-making in macroscale urban agglomerations, ecology, production, and living space intensive layout and dynamic decision-making in mesoscale cities, and four cores(i.e., ‘single, ring, axis, and pole core') progressive linkage and intensive optimization decision-making in microscale urban centers. The theory and technical pathways proposed in this paper solve the technical problem of optimization and provide intensive methods that can be applied not only at the individual level but also at multiple scales in urban agglomeration spaces. This study also advances a series of comprehensive technical solutions that can be applied to both compact and smart growth cities as well as to urban agglomerations. Solid theoretical support is provided for the optimization of Chinese land development, urbanization, agricultural development, and ecological security.展开更多
In Wuhan urban agglomeration (WUA), the population growth and concentration, the industrial development and urban sprawl have been affecting the environment ftmdamentally. Comparing with Yangtze delta metropolitan r...In Wuhan urban agglomeration (WUA), the population growth and concentration, the industrial development and urban sprawl have been affecting the environment ftmdamentally. Comparing with Yangtze delta metropolitan region, the level of urbanization and industrialization of WUA has lagged behind for about 10 years; but the problems in environmental protection and rehabilitation are commonly serious. In the future, WUA should avoid unnecessary mistakes and seek a win-win strategy for economy and environment in its large-scale development stage. Based on the analysis of the changing of main environmental pollutants and the coupled curves in past decades, the paper discussed the important links among the urban environmental pollutions, industry growth and urban sprawl in WUA. It is concluded that the integration of economic and environmental policies in urban development is more required and significant at the large urban agglomeration region. Four proactive and long-term strategies need to be adopted to provide prior guidance and better protection for the development of WUA.展开更多
The construction of an ecological security pattern(ESP)is an important way to ensure regional ecological security and to achieve sustainable regional development.It is also one of the hotspot topics of landscape ecolo...The construction of an ecological security pattern(ESP)is an important way to ensure regional ecological security and to achieve sustainable regional development.It is also one of the hotspot topics of landscape ecology research.This paper identifies the ecological source through the evaluation of the ecosystem service and ecosystem sensitivity of the Lanzhou-Xining(Lan-Xi)urban agglomeration.The minimum cumulative resistance(MCR)model modified by night light data NPP/VIIRS(National Polar-orbiting Operational Environmental Satellite System Preparatory Project/Visible Infrared Imaging Radiometer Suite)was used to measure the relative resistance of the materials and energy circulation between the source areas,and to establish the resistance surface of the ecological source area expansion.Then ecological corridors were identified based on ecological sources and resistance surface.The ecological strategic node is the ecological fragile point in the ecological corridors.The ecological strategic node is identified with hydrological module by superimposing the"ridge line"of cumulative ecological resistance with the ecological corridor.Combined with ecological sources,corridors and strategic nodes,the ESP of the Lan-Xi urban agglomeration can be constructed.The ecological source of the Lan-Xi urban agglomeration accounts for 28.42%of the total area,most of which is distributed within Qinghai Province.The nature reserves in the area are all located within the ecological source area.A total of 41 potential ecological corridors have been identified in the study area.The total length of the potential corridors is 1201.03 km,comprising 23 source corridors and 18 radiation corridors.There are 30 strategic nodes identified in the Lan-Xi urban agglomeration.These locations are the most vulnerable areas of the ecological corridors.Ecological engineering should be applied in the construction of corridors.Affected by the ecological source,the potential ecological corridor extends from the northwest to the southeast,which is basically consistent with the direction trend of the mountains in the region.展开更多
基金supported by the Beijing Municipal Science & Technology Commission (Grant No.D09040903670902)the National Natural Science Foundation of China Grant Nos.41222033 and 41230642supported by the CAS Strategic Priority Research Program Grant No.XDA05100100
文摘The Atmospheric Environmental Monitoring Network successfully undertook the task of monitoring the atmospheric quality of Beijing and its surrounding area during the 2008 Olympics. The results of this monitoring show that high concentrations of PM2.5 pollution exhibited a regional pattern during the monitoring period (1 June-30 October 2008). The PM2.5 mass concentrations were 53 μg m-3, 66 p.g m-3, and 82 μg m-3 at the background site, in Beijing, and in the Beijing-Tianjin-Hebei urban agglomerations, respectively. The PM2.5 levels were lowest during the 2008 Olympic Games (8-24 August): 35μg m-3 at the background site, 42 μg m-3 in Beijing and 57 μg m-3 in the region. These levels represent decreases of 49%, 48% and 56%, respectively, compared to the prophase mean concentration before the Olympic Games. Emission control measures contributed 62% 82% of the declines observed in Beijing, and meteorological conditions represented 18%-38%. The concentration of fine particles met the goals set for a "Green Olympics."
基金supported by National Social Science Foundation of China"Research on the Spatial Optimization Mechanism and Path of the National Urban New District from the Perspective of Urban Agglomeration Integration"[Grant number:16BGL208],the principal of the project:Xia ZhouNational Natural Science Foundation of China"Coupling Mechanism between Land Price Gradient and Industrial Gradient and Optimization of Industrial Structure of Urban Agglomeration"[Grant number:71173148]Beijing Science and Technology Support"Green Channel"Project"Land Security for Non-capital Core Functions"[Grant number:2161100001116016],the principal of the project:Deqi Wang
文摘As the space carrier of the construction of ecological civilization, land's green and efficient utilization is an important guarantee for realizing national sustainable development. Based on traditional land evaluation, this paper scientifically defines the green land use, puts land as one of the production factors, and brings energy consumption, environmental pollution, etc. into the input-output system to measure the green land utilization efficiency of the urban construction land of Beijing-TianjinHebei Urban Agglomeration from 2006 to 2016. The study shows that the overall efficiency variation of the urban agglomeration is related with the land and environment policies. Efficiency of 2016 is higher than that of 2006, and energy and environment are the principal factors affecting the green land use. The efficiency of each city is positively correlated with its economic development, negatively correlated with the construction land expansion. Efficiency gaps in different cities are expanding.There is positive correlation with overall weak space between cities, and the partial spatial agglomeration phenomenon appears. Therefore, the green land use efficiency could be improved by improving land utilization efficiency, coordinating economic growth of construction land utilization with environmental protection and taking feasible ways to transregional renovation of the stock ecological land utilization, etc.
基金National Natural Science Foundation of China,No.42371213Third Xinjiang Scientific Expedition Program,No.2021xjkk0900。
文摘The internal technological innovation(IT)and external technological cooperation(ET)of a city are crucial drivers for its green development(GD).Although previous studies have extensively explored the effect of IT on GD,IT,ET and GD have not been integrated into the same framework to explore their relationship.Using panel data of 13 cities in the Beijing-Tianjin-Hebei urban agglomeration,this study revealed the spatio-temporal evolution of GD and analyzed the effects of IT and ET on GD from the perspective of baseline impact,spatial effect and synergy effect.Empirical results demonstrate that the level of urban GD has upgraded and the difference in GD between cities has been narrowed though it decreases from the middle to both ends.IT significantly promotes the growth of GD while ET has an inverted U-shaped effect on GD.Under the influence of spatial spillover,IT has a U-shaped effect on the GD of neighboring cities while the effect of ET on neighboring GD is not significant.Additionally,the interaction between IT and ET has not been effective,leading to an insignificant synergy effect on GD.These findings will provide reference for taking rational advantage of IT and ET to facilitate urban GD.
基金National Natural Science Foundation of China,No.41771131China Scholarship Council,No.202008110050Key Program for Scientific Research of Beijing Union University,No.SKZD202306。
文摘Green development is a critical component of sustainable tourism, which prioritizes a comprehensive, ecologically-friendly, and people-oriented approach to development. This study presents a case study of the Beijing–Tianjin–Hebei(BTH) urban agglomeration from 2001 to 2021 to analyze the spatio-temporal evolution characteristics and influencing factors of tourism green development efficiency(TGDE). The study defines the concept of tourism green development and constructs an evaluation system, which is used to explore the internal differences and spatial patterns of TGDE within the urban agglomeration. The methodological approach includes the SBM–Undesirable model, kernel density estimation, Markov chain, and spatial gravity model. The findings indicate that the TGDE in the BTH urban agglomeration is generally favorable, displaying a temporal phase of “rising–declining–rising.” However, the study observes lower TGDE in tourism node cities compared to tourism regional center cities and tourism core hub cities. The non-equilibrium degree of each region indicates significant spatio-temporal evolution patterns and internal differences among the three regions, with a spatially decreasing distribution of “core hub-regional center-node city.” The TGDE in the urban agglomeration experienced an evolutionary trend of “first decreasing and then increasing” with apparent endogenous evolution characteristics. The linkage pattern of green development efficiency in the tourism industry between cities is relatively stable. Furthermore,neighboring cities generally exhibit a higher spatial connectivity strength of green development efficiency in the tourism industry compared to non-neighboring cities. Economic development level, industrial structure, and science and education level are identified as key factors that affect TGDE. However, the study finds that the factors influencing TGDE in tourism core hub cities, tourism regional center cities, and tourism node cities differ somewhat. Economic development level, industrial structure, science and education level, openness, and government regulation impact TGDE in tourism core hub cities and tourism regional center cities, while economic development level, industrial structure, and tourism resource endowment are the primary factors affecting TGDE in tourism node cities. The study provides policymakers and tourism practitioners with valuable insights into enhancing the green development of the tourism industry in the BTH urban agglomeration and other similar regions.Corresponding policy recommendations based on the results are proposed to improve the TGDE of the tourism industry in these regions, promote sustainable tourism development,improve the quality of life of local residents, and protect the ecological environment.
基金supported by the Major Program of National Natural Science Foundation of China: “Coupled mechanism and interactive coercing effects between urbanization and eco-environment in mega-urban agglomerations” (Grant Nos. 41590840 & 41590842)
文摘We use emergy-based urban metabolism analysis in this study to investigate the local coupling and telecoupling between urbanization and the eco-environment in the Beijing-Tianjin-Hebei urban agglomeration. Our analysis encompasses the last 35 years spanning the period between 1980 and 2014. In addition, we analyze urban metabolic efficiency and environmental pressure in these couplings. There are three main conclusions of this study. First, we show that the total metabolic emergy value of the Beijing-Tianjin-Hebei urban agglomeration has increased over the last 35 years, and that external elements have replaced internal ones as the leading contributors to urban metabolism in this region. The proportion of metabolic emergy derived from external elements increased from 30.87% in 1980 to 67.43% in 2014. The emergy extroversion ratio has continued to increase over our study period, while the development of this urban agglomeration had become progressively and more heavily reliant on external elements. Second, over the study period, the metabolic emergy intensity of elements of local coupling and telecoupling in the Beijing-Tianjin-Hebei urban agglomeration has declined at an accelerating rate, from 1.15×10^(21) Sej/100 million RMB in1980 to 9.69×10^(19) Sej/100 million RMB in 2014. This reflects a continuous increase in the economic efficiency of this area.Correspondingly, emergy use per capita increased from 7.8×10^(15) Sej/person in 1980 to 5.83×10^(16) Sej/person in 2014, suggesting a gradual rise in the level of social welfare in this urban agglomeration. However, we also observed a consistently elevated environmental loading ratio(ELR) in our analysis in terms of metabolism of local coupling and telecoupling elements. This result indicates that environmental pressure has also increased constantly within the Beijing-Tianjin-Hebei urban agglomeration. Third,our analysis shows that the ELR of metabolic emergy from internal elements increased from 8.30 in 1980 to 43.46 in 2014, while the ratio from external elements increased from 4.15 to 92.03. Thus, we quantitatively investigated the dependency of development within this urban agglomeration on external elements as well as the resultant environmental load. The conclusions of this study provide the basis for quantitative policy-making in the Beijing-Tianjin-Hebei region, optimizing economic structures, improving economic efficiency, controlling environmental pollution, and promoting the coordinated development of this region.
基金supported by the Major Program of National Natural Science Foundation of China(Grant Nos.41590840&41590842)
文摘The natural formation and development of urban agglomerations is a process in which core cities continue to unite their neighboring cities to enhance sustainability for their own sustainable development.The upgrade mechanism of sustainable development urban agglomeration is a nonlinear composite upgrade curve that is a function of time,increasing with the number of cities.In this paper,the sustainable upgrade function curve,upgrade rate,and upgrade speed of urban agglomerations were solved using a geometrical derivation,and the index system for measuring the upgrade capability of sustainable development of urban agglomerations was established.The dynamic change in economic sustainable upgrade capability,social sustainable upgrade capability,environmental sustainable upgrade capability,and comprehensive sustainable upgrade capability of a Beijing-Tianjin-Hebei urban agglomeration from 2000 to 2015 was measured by technique for order preference by similarity to an ideal solution and a grey correlation method,and a comprehensive,intercity unite strength model and a unite threshold calculation method for urban agglomerations were established.The research shows that the economic sustainable upgrade capability,social sustainable upgrade capability,environmental sustainable upgrade capability,and comprehensive sustainable upgrade capability of the Beijing-Tianjin-Hebei urban agglomeration all show a wave-like rising trend.The average annual upgrade speeds during 2000-2015 are,respectively,2.4%.1.67%,1.1%,and 1.74%,with the intercity comprehensive unite strength of urban agglomerations maintaining a general increase;but there is a limit to the joint threshold.From 2000 to 2015,as the core city of the Beijing-Tianjin-Hebei urban agglomeration,Beijing,to enhance its sustainable upgrade capability,jointly developed with Tianjin,Langfang,and Baoding before 2000,Tangshan in 2002,Cangzhou in 2009,Zhangjiakou and Shijiazhuang in 2012,and Chengde in 2014.By 2015,the comprehensive unite strength between Beijing and four cities(Handan,Qinhuangdao,Hengshui,and Xingtai) was still lower than the unite threshold of 6.14.These four cities are relatively far from Beijing,and offer no substantial contribution to the sustainable upgrade capability of Beijing.Through multiple fittings of the upgrade curve using the long-term sequence index of the comprehensive sustainable upgrade capability of Beijing(the core city of the Beijing-Tianjin-Hebei urban agglomeration) from 2000 to 2015,it was found that the simulated curve of the comprehensive sustainable upgrade function of the agglomeration was very similar to the curve of the comprehensive sustainable upgrade capability,which indicates that the simulation results are satisfactory.The future comprehensive sustainable upgrade capability of the agglomeration can be analyzed and predicted by the comprehensive sustainable upgrade function model.This study provides quantitative decision-supporting evidence for promoting the coordinated development of the Beijing-TianjinHebei urban agglomeration and provides theoretical guidance and algorithms for determining the number of cities joined with the sustainable development of national urban agglomerations.
基金National Natural Science Foundation of China(42121001)National Natural Science Foundation of China(42130712)+1 种基金National Natural Science Foundation of China(42022007)Youth Innovation Promotion Association,CAS(2018069)。
文摘Research on the carbon budget and zoning for carbon compensation in major functional zones(MFZs)is important for formulating strategies for low-carbon development for each functional zone,promoting the collaborative governance of the regional ecological environment,and achieving high-quality development.Such work can also contribute to achieving peak emissions and carbon neutrality.This paper constructs a theoretical framework for the carbon budget and carbon compensation from the perspective of the MFZ,uses 157 county-level units of the Beijing-Tianjin-Hebei urban agglomeration(BTHUA)as the study area,and introduces the concentration index,normalized revealed comparative advantage index,and Self Organizing Mapping-K-means(SOM-K-means)model to examine spatio-temporal variations in the carbon budget and carbon compensation zoning for the BTHUA from the perspective of MFZs.The authors propose a scheme for the spatial minimization of carbon emissions as oriented by low-carbon development.The results show that:(1)From 2000 to 2017,the carbon budget exhibited an upward trend of volatility,its centralization index was higher than the“warning line”of 0.4,and large regional differences in it were noted on the whole.(2)There were significant regional differences in the carbon budget,and carbon emissions exhibited a core-periphery spatial pattern,with a high-value center at Beijing-Tianjin-Tangshan that gradually decreased as it moved outward.However,the spatial pattern of carbon absorption tended to be stable,showing an inverted“U-shaped”pattern.It was high in the east,north,and west,and was low in the middle and the south.(3)The carbon budget was consistent with the strategic positioning of the MFZ,and the optimized development zone and key development zone were the main pressure-bearing areas for carbon emissions,while the key ecological functional zone was the dominant zone of carbon absorption.The difference in the centralization index of carbon absorption among the functional zones was smaller than that in the centralization index of carbon emissions.(4)There were 53 payment areas,64 balanced areas,and 40 obtaining areas in the study area.Nine types of carbon compensation zones were finally formed in light of the strategic objectives of the MFZ,and directions and strategies for low-carbon development are proposed for each type.(5)It is important to strengthen research on the carbon balance and horizontal carbon compensation at a microscopic scale,enrich the theoretical framework of regional carbon compensation,integrate it into the carbon trading market,and explore diversified paths for achieving peak emissions and carbon neutrality.
基金Major Program of the National Natural Science Foundation of China,No.41590842
文摘Under China's innovation-driven development strategy, venture capital has become an important driving force in urban agglomeration integration and collaborative innovation. This paper uses social network analysis to analyze spatiotemporal differences of venture capital in the Beijing-Tianjin-Hebei urban agglomeration for the period 2005–2015. A gravity model and panel data regression model are used to reveal the influencing factors on spatiotemporal differences in venture capital in the region. This study finds that there is a certain cyclical fluctuation and uneven differentiation in the venture capital network in the Beijing-Tianjin-Hebei urban agglomeration in terms of total investment, and that the three centers of venture capital(Beijing, Shijiazhuang and Tangshan) have a stimulatory effect on surrounding cities; flows of venture capital between cities display certain networking rules, but they are slow to develop and strongly centripetal; there is a strong positive correlation between levels of information infrastructure development and economic development and venture capital investment; and places with relatively underdeveloped financial environments and service industries are less able to apply the fruits of innovation and entrepreneurship and to attract funds. This study can act as a reference for the Beijing-Tianjin-Hebei urban agglomeration in building a world-class super urban agglomeration with the best innovation capabilities in China.
基金Under the auspices of National Natural Science Foundation of China(No.72373094,72303149)Scientific Research Start-up Funds of Guangdong Ocean University(No.060302082319)。
文摘High-quality development is the primary task of comprehensively building a socialist,modern country,as well as the primary task of building urban agglomerations in China.Based on the five development concepts,this paper used the entropy method to measure the High Quality Development Index(HQDI)of the five major urban agglomerations.The results showed that the HQDI of the five major urban agglomerations shows a fluctuating upward trend.First,using the Dagum Gini coefficient to explore the sources of HQDI development differences in urban agglomerations,we found that the main source of HQDI differences in urban agglomerations was inter-regional differences,while intra-regional differences were not important.Second,kernel density estimation was used to test the dynamic evolution trend of HQDI within urban agglomerations.There was a polarisation phenomenon in the HQDI of urban agglomerations,such as the Pearl River Delta urban agglomeration and the Chengdu-Chongqing urban agglomeration.But overall,the degree of imbalance had decreased.Third,using geographic detectors to examine the driving factors of HQDI in urban agglomerations,we found that the main driving forces for improving HQDI in urban agglomerations were economic growth,artificial intelligence technology and fiscal decentralisation.All the interaction factors had greater explanatory power for the spatial differentiation of HQDI,which can be divided into two types:two-factor improvement and non-linear improvement.This study is conducive to improving and enriching the theoretical system for evaluating the high quality development of urban agglomerations,and provides policy references for promoting the high quality development of urban agglomerations.
文摘The inter-city linkage heat data provided by Baidu Migration is employed as a characterization of inter-city linkages in order to facilitate the study of the network linkage characteristics and hierarchical structure of urban agglomeration in the Greater Bay Area through the use of social network analysis method.This is the inaugural application of big data based on location services in the study of urban agglomeration network structure,which represents a novel research perspective on this topic.The study reveals that the density of network linkages in the Greater Bay Area urban agglomeration has reached 100%,indicating a mature network-like spatial structure.This structure has given rise to three distinct communities:Shenzhen-Dongguan-Huizhou,Guangzhou-Foshan-Zhaoqing,and Zhuhai-Zhongshan-Jiangmen.Additionally,cities within the Greater Bay Area urban agglomeration play different roles,suggesting that varying development strategies may be necessary to achieve staggered development.The study demonstrates that large datasets represented by LBS can offer novel insights and methodologies for the examination of urban agglomeration network structures,contingent on the appropriate mining and processing of the data.
基金Under the auspices of National Natural Science Foundation of China(No.42276234)National Social Science Foundation Major Project of China(No.23&ZD105)+1 种基金the Open Fund of the Key Laboratory of Coastal Zone Exploitation and Protection,Ministry of Natural Resources of China(No.2023CZEPK04)the Science and Technology Major Project of Ningbo(No.2021Z181)。
文摘Urban agglomerations,serving as pivotal centers of human activity,undergo swift alterations in ecosystem services prompted by shifts in land utilization.Strengthening the monitoring of ecosystem services in present and future urban agglomerations contributes to the rational planning of these areas and enhances the well-being of their inhabitants.Here,we analyzed land use conversion in the Yangtze River Delta(YRD)urban agglomeration during 1990-2020 and discussed the spatiotemporal response and main drivers of changes in ecosystem service value(ESV).By considering the different development strategic directions described in land use planning policies,we predicted land use conversion and its impact on ESV using the Future Land Use Simulation(FLUS)model in three scenari-os in 2025 and 2030.Results show that:1)from 1990 to 2020,land use change is mainly manifested as the continuous expansion of con-struction land to cultivated land.Among the reduced cultivated land,82.2%were occupied by construction land.2)The land use types conversion caused a loss of 21.85 billion yuan(RMB)in ESV during 1990-2020.Moreover,the large reduction of cultivated land area led to the continuous decline of food production value,accounting for 13%of the total ESV loss.3)From 2020 to 2030,land use change will mainly focus on Yangzhou and Zhenjiang in central Jiangsu Province and Taizhou in southern Zhejiang Province.Under the BAU(natural development)and ED(cultivated land protection)scenarios,construction land expansion remains dominant.In contrast,under the EP(ecological protection)scenario,the areas of water bodies and forest land increase significantly.Among the different scenarios,ESV is highest in the EP scenario,making it the optimal solution for sustainable land use.It can be seen that the space use conflict among urban,agriculture and ecology is a key factor leading to ESV change in the urban agglomeration of Yangtze River Delta.There-fore,it is crucial to maintain spatial land use coordination.Our findings provide suggestions for scientific and rational land use planning for the urban agglomeration.
基金Innovation Research Group Project of National Natural Science Foundation of China,No.42121001。
文摘The continuous growth of urban agglomerations in China has increased their complexity as well as vulnerability. In this context, urban resilience is critical for the healthy and sustainable development of urban agglomerations. Focusing on the Beijing-Tianjin-Hebei(BTH) urban agglomeration, this study constructs an urban resilience evaluation system based on four subsystems: economy, society, infrastructure, and ecology. It uses the entropy method to measure the urban resilience of the BTH urban agglomeration from 2000 to 2018.Theil index, standard deviation ellipse, and gray prediction model GM(1,1) methods are used to examine the spatio-temporal evolution and dynamic simulation of urban resilience in this urban agglomeration. Our results show that the comprehensive evaluation index for urban resilience in the BTH urban agglomeration followed a steady upward trend from 2000 to 2018,with an average annual growth rate of 6.72%. There are significant differences in each subsystem’s contribution to urban resilience;overall, economic resilience is the main factor affecting urban resilience, with an average annual growth rate of 8.06%. Spatial differences in urban resilience in the BTH urban agglomeration have decreased from 2000 to 2018, showing the typical characteristic of being greater in the central core area and lower in the surrounding non-core areas. The level of urban resilience in the BTH urban agglomeration is forecast to continue increasing over the next ten years. However, there are still considerable differences between the cities. Policy factors will play a positive role in promoting the resilience level. Based on the evaluation results, corresponding policy recommendations are put forwar to provide scientific data support and a theoretical basis for the resilience construction of the BTH urban agglomeration.
文摘This paper adopts the perspective of urban economic linkage and the modified urban economic gravity model to conduct a comparative analysis of the economic gravity among cities in China’s three major urban agglomerations,including the Beijing-Tianjin-Hebei region,the Yangtze River Delta,and the Pearl River Delta.The results show that,despite the ever-tightening economic linkages among cities in the urban agglomerations,the development of the Beijing-Tianjin-Hebei region falls behind that of the Yangtze River Delta and the Pearl River Delta in terms of coordination,closeness,and balance.The economic linkages among cities in the Beijing-Tianjin-Hebei region are not as cohesive as they could be and display a significant“siphon effect”through Beijing and Tianjin as well as a prominently unidirectional economic flow.This study suggests that efforts should be put into directing the orderly flow of resources from Beijing and Tianjin to cities in Hebei and promoting a balanced economic flow among cities,thus facilitating the coordination of regional development.
基金Supported by Scientific Resarch Program of Humanities and Social Sciences launched by Hubei Provincial Department of Education(2009b530)~~
文摘Spatial structure of rural tourism in the urban agglomerations of Wuhan was analyzed by comprehensively studying relevant documents about rural tourism,and reviewing previous researches on the concept and spatial structure of rural tourism.Through investigating rural tourist resources in the study area,resource advantages and characteristics of 9 cities were introduced,and the Gini Coefficient was taken to quantitatively analyze spatial patterns of its rural tourist villages,the obviously imbalanced concentration of these villages was pointed out.By measuring connectivity and accessibility of regional spaces in the study area,its traffic connectivity was proved moderate,and accessibility of each tourist village and town was fine.Then an optimized spatial structure was proposed for the rural tourism development in Wuhan Urban Agglomerations,that is,"one core,one belt and three districts".
基金Under the auspices of National Key Research and Development Program of China(No.2017YFC0212301,2016YFC0203304)Basic Research Funds of Central Public Welfare Research Institutes(No.2018SYIAEZD4)+3 种基金Program of Liaoning Meteorological Office(No.201904,D201603)Key Program of National Natural Science Foundation of China(No.41730647)Program of Laboratory of Atmospheric Chemistry,China Meteorological Administration(No.2017B02)Key Program of Natural Science Foundation of Liaoning Province(No.20170520359)
文摘Characteristics of air pollution in Northeast China(NEC) received less research attention in the past comparing to other heavily polluted regions in China.Spatiotemporal variations of six criteria air pollutants(PM10, PM2.5, SO2, NO2, O3 and CO) in Central Liaoning Urban Agglomeration(CLUA) and Harbin-Changchun Urban Agglomeration(HCUA) in NEC Plain were analyzed in this study based on three-year hourly observations of air pollutants and meteorological variables from 2015 to 2017.The results indicated that the annual mean concentrations of air pollutants are generally higher in the middle and southern regions in NEC Plain and lower in the northern region.Megacities such as Shenyang, Harbin and Changchun experience severe air pollution, with a three-year averaged air quality index(AQI) larger than 80, far exceeding the daily AQI standard at the first-level of 50 in China.The annual mean PM and SO2 concentrations decrease most significantly in NEC urban agglomerations from 2015 to 2017, followed by CO and NO2, while O3 shows a slight increasing trend.All the six pollutants exhibit obvious seasonal and diurnal variations, and these variations are dictated by local emission and meteorological conditions.PM2.5 and O3 concentrations in NEC urban agglomerations strongly depend on wind conditions.High O3 concentrations at different cities usually occur in presence of strong winds but are independent on wind direction(WD), while high PM2.5 is usually accompanied by weak winds and poor dispersion condition, and sometimes also occur when the northerly or southerly winds are strong.Regional transport of air pollutants between NEC urban agglomerations is common.A severe haze event on November 1–4, 2017 is examined to demonstrate the role of regional transport on pollution.
基金supported by the Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grant No. XDA05090000)the National Key Program for Developing Basic Sciences of China (Grant No. 2009CB421401)+1 种基金the Special Fund for Meteorological Scientific Research in Public Interest (Grant No. GYHY201106028)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-EW-202)
文摘We simulated the impact of anthropogenic heat release (AHR) on the regional climate in three vast city agglomerations in China using the Weather Research and Forecasting model with nested high-resolution modeling.Based on energy consumption and high-quality land use data,we designed two scenarios to represent no-AHR and current-AHR conditions.By comparing the results of the two numerical experiments,changes of surface air temperature and precipitation due to AHR were quantified and analyzed.We concluded that AHR increases the temperature in these urbanized areas by about 0.5℃-1℃,and this increase is more pronounced in winter than in other seasons.The inclusion of AHR enhances the convergence of water vapor over urbanized areas.Together with the warming of the lower troposphere and the enhancement of ascending motions caused by AHR,the average convective available potential energy in urbanized areas is increased.Rainfall amounts in summer over urbanized areas are likely to increase and regional precipitation patterns to be altered to some extent.
基金Under the auspices of National Natural Science Foundation of China(No.41801149)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA19040401)+1 种基金Young Talents of Science and Technology in Universities of Inner Mongolia(No.NJTY-20-B09)Key Laboratory of Regional Sustainable Development Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(No.KF2018-05)。
文摘Urban agglomeration research has received increasing attention in China’s national development strategies, and has become a hot topic in academic research. This study develops a theoretical framework that explores the formation mechanism and expansion process of urban agglomerations from the perspective of industrial evolution, and identifies the development issues and their causes by taking Yangtze Delta and Beijing-Tianjin-Hebei urban agglomerations as case studies. In the process of urban agglomeration formation within a free market, as has happened in Yangtze Delta region, the central city develops first, its secondary industry is then transferred to its neighboring cities, and the work division and cooperation with the neighboring cities is gradually established. However, in the 1990 s, aiming to become an international metropolis, Beijing implemented a series of administrative policies to encourage the reduction of the secondary industry and the development of the tertiary industry, before its secondary industry were fully developed and transferred to its neighboring cities. This delayed the integration process and the development of the Beijing-Tianjin-Hebei urban agglomeration. This study builds a good foundation for the construction of the theoretical system’s urban agglomeration study, and provides references for decision making in an urban agglomeration development.
基金Under the auspices of Major Program of the National Natural Science Foundation of China ‘Coupled mechanisms and interactive coercing effects between urbanization and eco-environment in mega-urban agglomerations’(No.41590842)
文摘Urban agglomerations are spatial entities that promote the development of ‘new urbanization' processes within China. In this context, the concept of ‘multiscale urban agglomeration spaces' encompasses three linked levels: macroscale urban agglomerations, mesoscale cities, and microscale urban centers. Applying a series of multidisciplinary integrated research methods drawn from geography, urban planning, and architecture, this paper reveals two intensive utilization laws that can be generalized to apply to multiscale urban agglomeration spaces, top-to-bottom ‘positive transmission' linkage and inside-to-outside ‘negative transmission' movement. This paper also proposes optimization transmission theory and policy decision technical pathways that can be applied to these three urban agglomeration spatial scales. Specific technical pathways of transmission include intensive expansion and simulated decision-making in macroscale urban agglomerations, ecology, production, and living space intensive layout and dynamic decision-making in mesoscale cities, and four cores(i.e., ‘single, ring, axis, and pole core') progressive linkage and intensive optimization decision-making in microscale urban centers. The theory and technical pathways proposed in this paper solve the technical problem of optimization and provide intensive methods that can be applied not only at the individual level but also at multiple scales in urban agglomeration spaces. This study also advances a series of comprehensive technical solutions that can be applied to both compact and smart growth cities as well as to urban agglomerations. Solid theoretical support is provided for the optimization of Chinese land development, urbanization, agricultural development, and ecological security.
基金The National Natural Science Foundation of China (No. 40225004 40335049)
文摘In Wuhan urban agglomeration (WUA), the population growth and concentration, the industrial development and urban sprawl have been affecting the environment ftmdamentally. Comparing with Yangtze delta metropolitan region, the level of urbanization and industrialization of WUA has lagged behind for about 10 years; but the problems in environmental protection and rehabilitation are commonly serious. In the future, WUA should avoid unnecessary mistakes and seek a win-win strategy for economy and environment in its large-scale development stage. Based on the analysis of the changing of main environmental pollutants and the coupled curves in past decades, the paper discussed the important links among the urban environmental pollutions, industry growth and urban sprawl in WUA. It is concluded that the integration of economic and environmental policies in urban development is more required and significant at the large urban agglomeration region. Four proactive and long-term strategies need to be adopted to provide prior guidance and better protection for the development of WUA.
基金funded by the Improvement Plan of Scientific Research Ability in Northwest Normal University(NWNU-LKQN2020-16)National Science Foundation of China(Grant No.41771130)。
文摘The construction of an ecological security pattern(ESP)is an important way to ensure regional ecological security and to achieve sustainable regional development.It is also one of the hotspot topics of landscape ecology research.This paper identifies the ecological source through the evaluation of the ecosystem service and ecosystem sensitivity of the Lanzhou-Xining(Lan-Xi)urban agglomeration.The minimum cumulative resistance(MCR)model modified by night light data NPP/VIIRS(National Polar-orbiting Operational Environmental Satellite System Preparatory Project/Visible Infrared Imaging Radiometer Suite)was used to measure the relative resistance of the materials and energy circulation between the source areas,and to establish the resistance surface of the ecological source area expansion.Then ecological corridors were identified based on ecological sources and resistance surface.The ecological strategic node is the ecological fragile point in the ecological corridors.The ecological strategic node is identified with hydrological module by superimposing the"ridge line"of cumulative ecological resistance with the ecological corridor.Combined with ecological sources,corridors and strategic nodes,the ESP of the Lan-Xi urban agglomeration can be constructed.The ecological source of the Lan-Xi urban agglomeration accounts for 28.42%of the total area,most of which is distributed within Qinghai Province.The nature reserves in the area are all located within the ecological source area.A total of 41 potential ecological corridors have been identified in the study area.The total length of the potential corridors is 1201.03 km,comprising 23 source corridors and 18 radiation corridors.There are 30 strategic nodes identified in the Lan-Xi urban agglomeration.These locations are the most vulnerable areas of the ecological corridors.Ecological engineering should be applied in the construction of corridors.Affected by the ecological source,the potential ecological corridor extends from the northwest to the southeast,which is basically consistent with the direction trend of the mountains in the region.