Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This l...Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This letter proposes a variable non-uniform quantized Belief Propaga-tion(BP)algorithm.The BP decoding is analyzed by density evolution with Gaussian approximation.Since the probability density of messages can be well approximated by Gaussian distribution,by theunbiased estimation of variance,the distribution of messages can be tracked during the iteration.Thusthe non-uniform quantization scheme can be optimized to minimize the distortion.Simulation resultsshow that the variable non-uniform quantization scheme can achieve better error rate performance andfaster decoding convergence than the conventional non-uniform quantization and uniform quantizationschemes.展开更多
For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. ...For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.展开更多
In this paper, A Belief Propagation concatenated Orderd-Statistic Decoder (BP-OSD) based on accumulated Log-Likelihood Ratio (LLR) is proposed for medium and short lengths Low Density Parity-Check (LDPC) codes coded B...In this paper, A Belief Propagation concatenated Orderd-Statistic Decoder (BP-OSD) based on accumulated Log-Likelihood Ratio (LLR) is proposed for medium and short lengths Low Density Parity-Check (LDPC) codes coded Bit-Interleaved Coded Modulation (BICM) systems. The accumulated soft output values delivered by every BP iteration are used as reliability values of Soft-Input Soft-Output OSD (SISO-OSD) decoder and the soft output of SISO-OSD is used as a priori probabilities of the demodulator for the next iteration. Simulation results show that this improved algorithm achieves noticeable performance gain with only modest increase in computation complexity.展开更多
针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和...针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和偏移因子,提升译码性能。仿真结果表明,改进后的算法相比LBP算法在计算复杂度降低的同时,也提升了译码性能,从而达到了易于硬件实现的目的。展开更多
LDPC codes are finding increasing use in applications requiring reliable and highly efficient information transfer over bandwidth. An LDPC code is defined by a sparse parity-check matrix and can be described by a bipa...LDPC codes are finding increasing use in applications requiring reliable and highly efficient information transfer over bandwidth. An LDPC code is defined by a sparse parity-check matrix and can be described by a bipartite graph called Tanner graph. Loops in Tanner graph prevent the sum-product algorithm from converging. Further, loops, especially short loops, degrade the performance of LDPC decoder, because they affect the independence of the extrinsic information exchanged in the iterative decoding. This paper, by graph theory, deduces cut-node tree graph of LDPC code, and depicts it with matrix. On the basis of tree matrix algorithm, whole depictions of loops can be figured out, providing of foundation for further research of relations between loops and LDPC codes’ performance.展开更多
基金the Aerospace Technology Support Foun-dation of China(No.J04-2005040).
文摘Non-uniform quantization for messages in Low-Density Parity-Check(LDPC)decoding canreduce implementation complexity and mitigate performance loss.But the distribution of messagesvaries in the iterative decoding.This letter proposes a variable non-uniform quantized Belief Propaga-tion(BP)algorithm.The BP decoding is analyzed by density evolution with Gaussian approximation.Since the probability density of messages can be well approximated by Gaussian distribution,by theunbiased estimation of variance,the distribution of messages can be tracked during the iteration.Thusthe non-uniform quantization scheme can be optimized to minimize the distortion.Simulation resultsshow that the variable non-uniform quantization scheme can achieve better error rate performance andfaster decoding convergence than the conventional non-uniform quantization and uniform quantizationschemes.
基金Project supported by the National Natural Science Foundation of China(Grant No.60972046)Grant from the National Defense Pre-Research Foundation of China
文摘For quantum sparse graph codes with stabilizer formalism, the unavoidable girth-four cycles in their Tanner graphs greatly degrade the iterative decoding performance with standard belief-propagation (BP) algorithm. In this paper, we present a jointly-check iterative algorithm suitable for decoding quantum sparse graph codes efficiently. Numerical simulations show that this modified method outperforms standard BP algorithm with an obvious performance improvement.
基金Supported by the National Natural Science Foundation of China (No: 60496311)
文摘In this paper, A Belief Propagation concatenated Orderd-Statistic Decoder (BP-OSD) based on accumulated Log-Likelihood Ratio (LLR) is proposed for medium and short lengths Low Density Parity-Check (LDPC) codes coded Bit-Interleaved Coded Modulation (BICM) systems. The accumulated soft output values delivered by every BP iteration are used as reliability values of Soft-Input Soft-Output OSD (SISO-OSD) decoder and the soft output of SISO-OSD is used as a priori probabilities of the demodulator for the next iteration. Simulation results show that this improved algorithm achieves noticeable performance gain with only modest increase in computation complexity.
文摘针对LDPC(Low Density Parity Check)码分层(LBP:Layered Belief-Propagation)译码算法计算复杂度高、不易于硬件实现的问题,提出一种改进算法。该算法首先引入函数f(x)使LBP译码算法的计算复杂度大大降低;同时引入具体参数校正因子和偏移因子,提升译码性能。仿真结果表明,改进后的算法相比LBP算法在计算复杂度降低的同时,也提升了译码性能,从而达到了易于硬件实现的目的。
文摘LDPC codes are finding increasing use in applications requiring reliable and highly efficient information transfer over bandwidth. An LDPC code is defined by a sparse parity-check matrix and can be described by a bipartite graph called Tanner graph. Loops in Tanner graph prevent the sum-product algorithm from converging. Further, loops, especially short loops, degrade the performance of LDPC decoder, because they affect the independence of the extrinsic information exchanged in the iterative decoding. This paper, by graph theory, deduces cut-node tree graph of LDPC code, and depicts it with matrix. On the basis of tree matrix algorithm, whole depictions of loops can be figured out, providing of foundation for further research of relations between loops and LDPC codes’ performance.