In cryptography,oblivious transfer(OT)is an important multiparty cryptographic primitive and protocol,that is suitable for many upperlayer applications,such as secure computation,remote coin-flipping,electrical contra...In cryptography,oblivious transfer(OT)is an important multiparty cryptographic primitive and protocol,that is suitable for many upperlayer applications,such as secure computation,remote coin-flipping,electrical contract signing and exchanging secrets simultaneously.However,some nogo theorems have been established,indicating that one-out-of-two quantum oblivious transfer(QOT)protocols with unconditional security are impossible.Fortunately,some one-out-of-two QOT protocols using the concept of Crepeau’s reduction have been demonstrated not to conform to Lo’s no-go theorem,but these protocols require more quantum resources to generate classical keys using all-or-nothing QOT to construct one-out-of-two QOT.This paper proposes a novel and efficient one-out-of-two QOT which uses quantum resources directly instead of wasting unnecessary resources to generate classical keys.The proposed protocol is not covered by Lo’s no-go theorem,and it is able to check the sender’s loyalty and avoid the attack from the receiver.Moreover,the entangled state of the proposed protocol is reusable,so it can provide more services for the participants when necessary.Compared with otherQOT protocols,the proposed protocol is more secure,efficient,and flexible,which not only can prevent external and internal attacks,but also reduce the required resources and resource distribution time.展开更多
We propose a new scheme for controlled quantum teleportation with Bell states in which classical keys for controllers' portion are used. We also discuss the security of the proposed scheme and show that it can satisf...We propose a new scheme for controlled quantum teleportation with Bell states in which classical keys for controllers' portion are used. We also discuss the security of the proposed scheme and show that it can satisfy the requirements for controlled quantum teleportation. The comparison between this scheme and the previous ones shows that it is more economical and efficient.展开更多
To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a nove...To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.展开更多
We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all s...We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all sharersmust make a state measurement.The merit of our protocol is the high capacity.展开更多
Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, an...Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security.展开更多
This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding...This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.展开更多
How to establish a secure and efficient quantum network coding algorithm isone of important research topics of quantum secure communications. Based on thebutterfly network model and the characteristics of easy prepara...How to establish a secure and efficient quantum network coding algorithm isone of important research topics of quantum secure communications. Based on thebutterfly network model and the characteristics of easy preparation of Bell states, a novelanti-noise quantum network coding protocol is proposed in this paper. The new protocolencodes and transmits classical information by virtue of Bell states. It can guarantee thetransparency of the intermediate nodes during information, so that the eavesdropper Evedisables to get any information even if he intercepts the transmitted quantum states. Inview of the inevitability of quantum noise in quantum channel used, this paper analyzesthe influence of four kinds of noises on the new protocol in detail further, and verifies theefficiency of the protocol under different noise by mathematical calculation and analysis.In addition, based on the detailed mathematical analysis, the protocol has functioned wellnot only on improving the efficiency of information transmission, throughput and linkutilization in the quantum network, but also on enhancing reliability and antieavesdroppingattacks.展开更多
We outline a scheme for entanglement swapping based on cavity QED as well as quasi-Bell state measurement(quasiBSM) methods. The atom–field interaction in the cavity QED method is performed in small and large detunin...We outline a scheme for entanglement swapping based on cavity QED as well as quasi-Bell state measurement(quasiBSM) methods. The atom–field interaction in the cavity QED method is performed in small and large detuning regimes.We assume two atoms are initially entangled together and, distinctly two cavities are prepared in an entangled coherent–coherent state. In this scheme, we want to transform entanglement to the atom-field system. It is observed that, the fidelities of the swapped entangled state in the quasi-BSM method can be compatible with those obtained in the small and large detuning regimes in the cavity QED method(the condition of this compatibility will be discussed). In addition, in the large detuning regime, the swapped entangled state is obtained by detecting and quasi-BSM approaches. In the continuation,by making use of the atom–field entangled state obtained in both approaches in a large detuning regime, we show that the atomic as well as field states teleportation with complete fidelity can be achieved.展开更多
We propose a scheme for generating Bell states involving two SQUID-based charge qubits by coupling themto a nanomechanical resonator.We also show that it is possible to implement a two-qubit logic gate between the two...We propose a scheme for generating Bell states involving two SQUID-based charge qubits by coupling themto a nanomechanical resonator.We also show that it is possible to implement a two-qubit logic gate between the twocharge qubits by choosing carefully the interaction time.展开更多
In this paper, we investigate entropy properties of the single-mode coherent optical field interacting with the two two-level atoms initially in one of the four Bell states. It is found that the different initial stat...In this paper, we investigate entropy properties of the single-mode coherent optical field interacting with the two two-level atoms initially in one of the four Bell states. It is found that the different initial states of the two atoms lead to different evolutions of field entropy and the intensity of the field plays an important role for the evolution properties of field entropy.展开更多
This paper proves that it is impossible to identify orthogonally time-separated Bell states. If two qubits of a Bell state interact with the measurement apparatus at different time, any attempt to identify this state ...This paper proves that it is impossible to identify orthogonally time-separated Bell states. If two qubits of a Bell state interact with the measurement apparatus at different time, any attempt to identify this state will disturb it.展开更多
Quantum mechanics shows superiority than classical mechanics in many aspects and quantum entanglement plays an essential role in information processing and some computational tasks such as quantum teleportation(QT).QT...Quantum mechanics shows superiority than classical mechanics in many aspects and quantum entanglement plays an essential role in information processing and some computational tasks such as quantum teleportation(QT).QT was proposed to transmit the unknown states,in which EPR pairs,the entangled states,can be used as quantum channels.In this paper,we present two simple schemes for teleporting a product state of two arbitrary single-particle and an arbitrary two-particle pure entangled state respectively.Alice and Bob have shared an entangle state.Two Bell states are used as quantum channels.Then after Alice measuring her qubits and informing Bob her measurement results,Bob can perfectly reconstruct the original state by performing corresponding unitary operators on his qubits.It shown that a product state of two arbitrary single-particle and an arbitrary two-particle pure entangled state can be teleported perfectly,i.e.the success probabilities of our schemes are both 1.展开更多
Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer q...Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer quantum state probability.展开更多
Quantum secure direct communication(QSDC)can transmit secret messages directly from one user to another without first establishing a shared secret key,which is different from quantum key distribution.In this paper,we ...Quantum secure direct communication(QSDC)can transmit secret messages directly from one user to another without first establishing a shared secret key,which is different from quantum key distribution.In this paper,we propose a novel quantum secure direct communication protocol based on signal photons and Bell states.Before the execution of the proposed protocol,two participants Alice and Bob exchange their corresponding identity IDA and IDB through quantum key distribution and keep them secret,respectively.Then the message sender,Alice,encodes each secret message bit into two single photons(|01>or|10>)or a Bell state(1|φ^(+)>=1/√2(|0>|-|1>1>)),and composes an ordered secret message sequence.To insure the security of communication,Alice also prepares the decoy photons and inserts them into secret message sequence on the basis of the values of IDA and IDB.By the secret identity IDA and IDB,both sides of the communication can check eavesdropping and identify each other.The proposed protocol not only completes secure direct communication,but also realizes the mutual authentication.The security analysis of the proposed protocol is presented in the paper.The analysis results show that this protocol is secure against some common attacks,and no secret message leaks even if the messages are broken.Compared with the two-way QSDC protocols,the presented protocol is a one-way quantum communication protocol which has the immunity to Trojan horse attack.Furthermore,our proposed protocol can be realized without quantum memory.展开更多
In this paper,we first propose a hidden rule among the secure message,the initial tensor product of two Bell states and the final tensor product when respectively applying local unitary transformations to the first pa...In this paper,we first propose a hidden rule among the secure message,the initial tensor product of two Bell states and the final tensor product when respectively applying local unitary transformations to the first particle of the two initial Bell states,and then present a high-efficiency quantum steganography protocol under the control of the hidden rule.In the proposed quantum steganography scheme,a hidden channel is established to transfer a secret message within any quantum secure direct communication(QSDC) scheme that is based on 2-level quantum states and unitary transformations.The secret message hiding/unhiding process is linked with the QSDC process only by unitary transformations.To accurately describe the capacity of a steganography scheme,a quantitative measure,named embedding efficiency,is introduced in this paper.The performance analysis shows that the proposed steganography scheme achieves a high efficiency as well as a good imperceptibility.Moreover,it is shown that this scheme can resist all serious attacks including the intercept-resend attack,measurement-resend attack,auxiliary particle attack and even the Denial of Service attack.To improve the efficiency of the proposed scheme,the hidden rule is extended based on the tensor product of multiple Bell states.展开更多
A scheme is proposed for quantum information splitting of a two-qubit Bell state by using a four-qubit entangled state as a quantum channel. In the scenario, it is supposed that there axe three legitimate parties, say...A scheme is proposed for quantum information splitting of a two-qubit Bell state by using a four-qubit entangled state as a quantum channel. In the scenario, it is supposed that there axe three legitimate parties, say Alice, Bob and Chaxlie. Alice is the sender of quantum information. Bob and Charlie are two agents. Alice first performs GHZ state measurement and tells Bob and Chaxlie the measurement results via a classical channel. It is impossible for Bob to reconstruct the original state with local operations unless help is obtained from Chaxlie. If Chaxlie allows Bob to reconstruct the original state information, he needs to perform a single-qubit measurement and tell Bob the measurement result. Using the measurement results from Alice and Charlie, Bob can reconstruct the original state. We also consider the problem of security attacks. This protocol is considered to be secure.展开更多
Teleportation schemes based on probabilistic channels usually rely heavily on the implementation of high-dimensional unitary operations. Since high-dimensional unitary operations are very difficult to directly impleme...Teleportation schemes based on probabilistic channels usually rely heavily on the implementation of high-dimensional unitary operations. Since high-dimensional unitary operations are very difficult to directly implement in physics experiments, methods are used to avoid high-dimensional unitary operations during the teleportation process. This paper describes how to construct a deterministic teleportation channel and a control channel using Bell state measurements only instead of high-dimensional unitary operations. Here, the general four-particle and five-particle class states are used as the potential quantum channel and the control channel for deterministic teleportation even without access to the relevant parameters. The results show that this scheme makes physical realization of teleportation more reasonable.展开更多
At present, the anti-noise property and the information leakage resistant property are two great concerns for quantum dialogue(QD). In this paper, two anti-noise QD protocols without information leakage are presented ...At present, the anti-noise property and the information leakage resistant property are two great concerns for quantum dialogue(QD). In this paper, two anti-noise QD protocols without information leakage are presented by using the entanglement swapping technology for two logical Bell states. One works well over a collective-dephasing noise channel, while the other takes effect over a collective-rotation noise channel. The negative influence of noise is erased by using logical Bell states as the traveling quantum states. The problem of information leakage is avoided by swapping entanglement between two logical Bell states. In addition, only Bell state measurements are used for decoding, rather than four-qubit joint measurements.展开更多
For the preparation of any target Bell state under continuous quantum measurement, this paper proposes a method which achieves the control objective by switching between two different models or by switching between tw...For the preparation of any target Bell state under continuous quantum measurement, this paper proposes a method which achieves the control objective by switching between two different models or by switching between two control channels under one model. Proper control Hamiltonians are selected for the two system models, a switching strategy between the two models is designed, and the stability of the whole switching system is proved in theory. For a given target Bell state, the effectiveness of the proposed switching control strategy between different models is illustrated through simulation experiments.展开更多
基金supported in part by the Ministry of Science and Technology(MOST)in Taiwan under Grants MOST108-2638-E-002-002-MY2,MOST109-2222-E-005-002-MY3,MOST110-2627-M-002-002,MOST110-2221-E-260-014,MOST110-2222-E-006-011,MOST111-2218-E-005-007-MBK,and MOST111-2119-M-033-001supported in part by Higher Education Sprout Project,Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University.
文摘In cryptography,oblivious transfer(OT)is an important multiparty cryptographic primitive and protocol,that is suitable for many upperlayer applications,such as secure computation,remote coin-flipping,electrical contract signing and exchanging secrets simultaneously.However,some nogo theorems have been established,indicating that one-out-of-two quantum oblivious transfer(QOT)protocols with unconditional security are impossible.Fortunately,some one-out-of-two QOT protocols using the concept of Crepeau’s reduction have been demonstrated not to conform to Lo’s no-go theorem,but these protocols require more quantum resources to generate classical keys using all-or-nothing QOT to construct one-out-of-two QOT.This paper proposes a novel and efficient one-out-of-two QOT which uses quantum resources directly instead of wasting unnecessary resources to generate classical keys.The proposed protocol is not covered by Lo’s no-go theorem,and it is able to check the sender’s loyalty and avoid the attack from the receiver.Moreover,the entangled state of the proposed protocol is reusable,so it can provide more services for the participants when necessary.Compared with otherQOT protocols,the proposed protocol is more secure,efficient,and flexible,which not only can prevent external and internal attacks,but also reduce the required resources and resource distribution time.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60873191,60903152,61003286 and 60821001)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant Nos. 200800131016 and 20090005110010)+2 种基金the Beijing Nova Program,China (Grant No. 2008B51)the Key Project of the Chinese Ministry of Education (Grant No. 109014)the Natural Science Foundation of Educational Bureau of Henan Province,China (Grant No. 2010B120008)
文摘We propose a new scheme for controlled quantum teleportation with Bell states in which classical keys for controllers' portion are used. We also discuss the security of the proposed scheme and show that it can satisfy the requirements for controlled quantum teleportation. The comparison between this scheme and the previous ones shows that it is more economical and efficient.
基金Project supported by the National Basic Research Program of China(Grant No.2013CB338002)
文摘To solve the problems of updating sub-secrets or secrets as well as adding or deleting agents in the quantum secret sharing protocol, we propose a two-particle transform of Bell states, and consequently present a novel dynamic quantum secret sharing protocol. The new protocol can not only resist some typical attacks, but also be more efficient than the existing protocols. Furthermore, we take advantage of the protocol to establish the dynamic secret sharing of a quantum state protocol for two-particle maximum entangled states.
文摘We present a two-photon three-dimensional multiparty quantum secret sharing scheme.The secret messagesare encoded by performing local operations.This is different from those quantum secret sharing protocols that all sharersmust make a state measurement.The merit of our protocol is the high capacity.
基金supported by the National Natural Science Foundation of China(Grant Nos.61303199,61272514,61170272,61121061,and 61411146001)the Shandong Provincial Natural Science Foundation of China(Grant Nos.ZR2013FM025,ZR2013FQ001,and ZR2014FM003)+4 种基金the Shandong Provincial Outstanding Research Award Fund for Young Scientists of China(Grant Nos.BS2013DX010 and BS2014DX007)the Program for New Century Excellent Talents in Universities,China(Grant No.NCET-13-0681)the National Development Foundation for Cryptological Research,China(Grant No.MMJJ201401012)the Fok Ying Tong Education Foundation,China(Grant No.131067)the Shandong Academy of Sciences Youth Fund Project,China(Grant No.2013QN007)
文摘Using entanglement swapping of high-level Bell states, we first derive a covert layer between the secret message and the possible output results of the entanglement swapping between any two generalized Bell states, and then propose a novel high-efficiency quantum information hiding protocol based on the covert layer. In the proposed scheme, a covert channel can be built up under the cover of a high-level quantum secure direct communication (QSDC) channel for securely transmitting secret messages without consuming any auxiliary quantum state or any extra communication resource. It is shown that this protocol not only has a high embedding efficiency but also achieves a good imperceptibility as well as a high security.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61272501,61272514,61170272,61472048,61402058,61121061,and 61411146001)the Program for New Century Excellent Talents in University of China(Grant No.NCET-13-0681)+4 种基金the National Development Foundation for Cryptological Research(Grant No.MMJJ201401012)the Fok Ying Tong Education Foundation(Grant No.131067)the Natural Science Foundation of Beijing(Grant Nos.4132056 and 4152038)the Postdoctoral Science Foundation of China(Grant No.2014M561826)the National Key Basic Research Program,China(Grant No.2012CB315905)
文摘This study proposes two novel fault tolerant deterministic secure quantum communication (DSQC) schemes resistant to collective noise using logical Bell states. Either DSQC scheme is constructed based on a new coding function, which is designed by exploiting the property of the corresponding logical Bell states immune to collective-dephasing noise and collective-rotation noise, respectively. The secret message can be encoded by two simple unitary operations and decoded by merely performing Bell measurements, which can make the proposed scheme more convenient in practical applications. Moreover, the strategy of one-step quanta transmission, together with the technique of decoy logical qubits checking not only reduces the influence of other noise existing in a quantum channel, but also guarantees the security of the communication between two legitimate users. The final analysis shows that the proposed schemes are feasible and robust against various well-known attacks over the collective noise channel.
文摘How to establish a secure and efficient quantum network coding algorithm isone of important research topics of quantum secure communications. Based on thebutterfly network model and the characteristics of easy preparation of Bell states, a novelanti-noise quantum network coding protocol is proposed in this paper. The new protocolencodes and transmits classical information by virtue of Bell states. It can guarantee thetransparency of the intermediate nodes during information, so that the eavesdropper Evedisables to get any information even if he intercepts the transmitted quantum states. Inview of the inevitability of quantum noise in quantum channel used, this paper analyzesthe influence of four kinds of noises on the new protocol in detail further, and verifies theefficiency of the protocol under different noise by mathematical calculation and analysis.In addition, based on the detailed mathematical analysis, the protocol has functioned wellnot only on improving the efficiency of information transmission, throughput and linkutilization in the quantum network, but also on enhancing reliability and antieavesdroppingattacks.
文摘We outline a scheme for entanglement swapping based on cavity QED as well as quasi-Bell state measurement(quasiBSM) methods. The atom–field interaction in the cavity QED method is performed in small and large detuning regimes.We assume two atoms are initially entangled together and, distinctly two cavities are prepared in an entangled coherent–coherent state. In this scheme, we want to transform entanglement to the atom-field system. It is observed that, the fidelities of the swapped entangled state in the quasi-BSM method can be compatible with those obtained in the small and large detuning regimes in the cavity QED method(the condition of this compatibility will be discussed). In addition, in the large detuning regime, the swapped entangled state is obtained by detecting and quasi-BSM approaches. In the continuation,by making use of the atom–field entangled state obtained in both approaches in a large detuning regime, we show that the atomic as well as field states teleportation with complete fidelity can be achieved.
基金The project supported by National Natural Science Foundation of China under Grant No. 10325523the National Fundamental Research Program of China under Grant No. 2001CB309310the Scientific Research Fund of the Education Department of Hunan Province under Grant No. 06C354
文摘We propose a scheme for generating Bell states involving two SQUID-based charge qubits by coupling themto a nanomechanical resonator.We also show that it is possible to implement a two-qubit logic gate between the twocharge qubits by choosing carefully the interaction time.
基金the Science Foundation of China University of Petroleum under Grant No. Y061815
文摘In this paper, we investigate entropy properties of the single-mode coherent optical field interacting with the two two-level atoms initially in one of the four Bell states. It is found that the different initial states of the two atoms lead to different evolutions of field entropy and the intensity of the field plays an important role for the evolution properties of field entropy.
基金supported by the National Natural Science Foundation of China (Grant No 10504039)the Youth Chenguang Project of Science and Technology of Wuhan City of China
文摘This paper proves that it is impossible to identify orthogonally time-separated Bell states. If two qubits of a Bell state interact with the measurement apparatus at different time, any attempt to identify this state will disturb it.
基金The work is supported by the National Natural Science Foundation of China(Grant No.61672014)the National Cryptography Development Fund(Grant No.MMJJ20180109)+1 种基金the Natural Science Foundation of Guangdong Province(Grant No.2016A030313090)the Fundamental Research Funds for the Central Universities.
文摘Quantum mechanics shows superiority than classical mechanics in many aspects and quantum entanglement plays an essential role in information processing and some computational tasks such as quantum teleportation(QT).QT was proposed to transmit the unknown states,in which EPR pairs,the entangled states,can be used as quantum channels.In this paper,we present two simple schemes for teleporting a product state of two arbitrary single-particle and an arbitrary two-particle pure entangled state respectively.Alice and Bob have shared an entangle state.Two Bell states are used as quantum channels.Then after Alice measuring her qubits and informing Bob her measurement results,Bob can perfectly reconstruct the original state by performing corresponding unitary operators on his qubits.It shown that a product state of two arbitrary single-particle and an arbitrary two-particle pure entangled state can be teleported perfectly,i.e.the success probabilities of our schemes are both 1.
基金National Natural Science Foundation of China under Grant No.10575017
文摘Transmitting quantum states by channels of analogous Bell states is studied in this paper. We analyze the transmitting process. constructed the probabilitic unitary operator, and gain the largest successful transfer quantum state probability.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.61572086,61402058)Major Project of Education Department in Sichuan(Grant No.18ZA0109)+5 种基金Planning project of Sichuan Network Culture Research Center(Grant No.WLWH18-22)Key Research and Development Project of Sichuan Province(No.20ZDYF2324,No.2019ZYD027,No.2018TJPT0012)Innovation Team of Quantum Security Communication of Sichuan Province(No.17TD0009)Academic and Technical Leaders Training Funding Support Projects of Sichuan Province(No.2016120080102643)Application Foundation Project of Sichuan Province(No.2017JY0168)Science and Technology Support Project of Sichuan Province(No.2018GZ0204,No.2016FZ0112).
文摘Quantum secure direct communication(QSDC)can transmit secret messages directly from one user to another without first establishing a shared secret key,which is different from quantum key distribution.In this paper,we propose a novel quantum secure direct communication protocol based on signal photons and Bell states.Before the execution of the proposed protocol,two participants Alice and Bob exchange their corresponding identity IDA and IDB through quantum key distribution and keep them secret,respectively.Then the message sender,Alice,encodes each secret message bit into two single photons(|01>or|10>)or a Bell state(1|φ^(+)>=1/√2(|0>|-|1>1>)),and composes an ordered secret message sequence.To insure the security of communication,Alice also prepares the decoy photons and inserts them into secret message sequence on the basis of the values of IDA and IDB.By the secret identity IDA and IDB,both sides of the communication can check eavesdropping and identify each other.The proposed protocol not only completes secure direct communication,but also realizes the mutual authentication.The security analysis of the proposed protocol is presented in the paper.The analysis results show that this protocol is secure against some common attacks,and no secret message leaks even if the messages are broken.Compared with the two-way QSDC protocols,the presented protocol is a one-way quantum communication protocol which has the immunity to Trojan horse attack.Furthermore,our proposed protocol can be realized without quantum memory.
基金supported by the National Natural Science Foundation of China (Grant Nos.61170272,61272514,61003287 and 61070163)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No.20100005120002)+3 种基金the Fok Ying Tong Education Foundation (Grant No.131067)the Shandong Provincial Natural Science Foundation,China (Grant Nos.ZR2011FM023 and ZR2009GM036)the Shandong Province Outstanding Research Award Fund for Young Scientists of China (Grant No.BS2011DX034)the Fundamental Research Funds for the Central Universities (Grant No.BUPT2012RC0221)
文摘In this paper,we first propose a hidden rule among the secure message,the initial tensor product of two Bell states and the final tensor product when respectively applying local unitary transformations to the first particle of the two initial Bell states,and then present a high-efficiency quantum steganography protocol under the control of the hidden rule.In the proposed quantum steganography scheme,a hidden channel is established to transfer a secret message within any quantum secure direct communication(QSDC) scheme that is based on 2-level quantum states and unitary transformations.The secret message hiding/unhiding process is linked with the QSDC process only by unitary transformations.To accurately describe the capacity of a steganography scheme,a quantitative measure,named embedding efficiency,is introduced in this paper.The performance analysis shows that the proposed steganography scheme achieves a high efficiency as well as a good imperceptibility.Moreover,it is shown that this scheme can resist all serious attacks including the intercept-resend attack,measurement-resend attack,auxiliary particle attack and even the Denial of Service attack.To improve the efficiency of the proposed scheme,the hidden rule is extended based on the tensor product of multiple Bell states.
基金Supported by Fundamental Research Funds for the Central Universi-ties(ZYGX2011J064)National Nature Science Foundation of China(60903157,61133016)National High Technology Joint Research Program of China(863 Program,2011AA010706)
文摘A scheme is proposed for quantum information splitting of a two-qubit Bell state by using a four-qubit entangled state as a quantum channel. In the scenario, it is supposed that there axe three legitimate parties, say Alice, Bob and Chaxlie. Alice is the sender of quantum information. Bob and Charlie are two agents. Alice first performs GHZ state measurement and tells Bob and Chaxlie the measurement results via a classical channel. It is impossible for Bob to reconstruct the original state with local operations unless help is obtained from Chaxlie. If Chaxlie allows Bob to reconstruct the original state information, he needs to perform a single-qubit measurement and tell Bob the measurement result. Using the measurement results from Alice and Charlie, Bob can reconstruct the original state. We also consider the problem of security attacks. This protocol is considered to be secure.
基金Supported by the National Natural Science Foundation of China(No. 60704017)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (No. 09KJD120003)
文摘Teleportation schemes based on probabilistic channels usually rely heavily on the implementation of high-dimensional unitary operations. Since high-dimensional unitary operations are very difficult to directly implement in physics experiments, methods are used to avoid high-dimensional unitary operations during the teleportation process. This paper describes how to construct a deterministic teleportation channel and a control channel using Bell state measurements only instead of high-dimensional unitary operations. Here, the general four-particle and five-particle class states are used as the potential quantum channel and the control channel for deterministic teleportation even without access to the relevant parameters. The results show that this scheme makes physical realization of teleportation more reasonable.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61402407 and 11375152
文摘At present, the anti-noise property and the information leakage resistant property are two great concerns for quantum dialogue(QD). In this paper, two anti-noise QD protocols without information leakage are presented by using the entanglement swapping technology for two logical Bell states. One works well over a collective-dephasing noise channel, while the other takes effect over a collective-rotation noise channel. The negative influence of noise is erased by using logical Bell states as the traveling quantum states. The problem of information leakage is avoided by swapping entanglement between two logical Bell states. In addition, only Bell state measurements are used for decoding, rather than four-qubit joint measurements.
基金supported by the Fundamental Research Funds for the Central Universities under Grant No.WK2100100019the National Natural Science Foundation of China under Grant No.61573330
文摘For the preparation of any target Bell state under continuous quantum measurement, this paper proposes a method which achieves the control objective by switching between two different models or by switching between two control channels under one model. Proper control Hamiltonians are selected for the two system models, a switching strategy between the two models is designed, and the stability of the whole switching system is proved in theory. For a given target Bell state, the effectiveness of the proposed switching control strategy between different models is illustrated through simulation experiments.