The Jinlongshan gold ore belt in southern Shaanxi Province contains a number of Carlin-type gold deposits in the Qinling collisional orogenic belt. Their fluid inclusions are of the Na-Cl- type. From the main metallog...The Jinlongshan gold ore belt in southern Shaanxi Province contains a number of Carlin-type gold deposits in the Qinling collisional orogenic belt. Their fluid inclusions are of the Na-Cl- type. From the main metallogenic stage to later stages, the total quantity of anions and cations, temperature and deoxidation parameter (R) for fluid inclusions all gradually decreased, suggesting the gradual intensification of fluid oxidation, the reduction of metallogenic depth and the input of meteoric water and organic components. The deposits were formed during crustal uplifting and hence had similar tectonic settings to orogenic gold deposits. The CO-2 contents and CO-2/H-2O values of the ore fluid increased from early to late stages, and the wall-rock alteration is represented by decarbonation, which is inconsistent with the characteristics of orogenic gold deposits. It is also discovered that Na, K, SO{2-}-4, Cl- and the total amounts of anions and cations in the inclusions in quartz are higher than those in the coexisting calcite. The H, O and C isotope ratios indicate that the ore fluid was sourced from meteoric water and metamorphic devolatilisation of the sedimentary rocks that host the ores. The high background {δ{}{18}O} and {δ{}{13}C} values of wall rocks resulted in high {δ{}{18}O} and {δ{}{13}C} values of ore fluid and also high {δ{}{18}O} and {δ{}{13}C} values of hydrothermal minerals such as quartz and carbonate. The carbon in ore fluid stemmed largely from the hosting strata. The {δ{}{18}O} and {δ{}{13}C} values of Fe-calcite and the δD values of fluid inclusions are lower than those of calcite and quartz. In terms of the theory of coordination chemistry, all these differences can be ascribed to water-rock interaction in the same fluid system, instead, to the multi-source of ore fluid.展开更多
The following geochemical types of granitoids have been investigated in the Mongol-Okhotsk belt:tholetitic,palingenic calc-alkaline,latitic,plumasitic and arpaitic rare-metal granites.Plagiogranites of the tholeiitic ...The following geochemical types of granitoids have been investigated in the Mongol-Okhotsk belt:tholetitic,palingenic calc-alkaline,latitic,plumasitic and arpaitic rare-metal granites.Plagiogranites of the tholeiitic series occur within the Mongol-Okhotsk suture,indicating a subduction environment.The calc-alkaline granitoids responsible for the batholith-like intrusions and their formation are related to collision environments.The latest granitoids of the latite series and rare-metal granites came into existence after the collision of continental masses,providing evidence of intraplate magmatism.展开更多
1 Introduction The Laurani porphyry deposit is located in the Altiplano,an extensive North-South trending structural basin that formed in Central-Andean metallogenic belt,Bolivia.The Altiplano poly-metallic province c...1 Introduction The Laurani porphyry deposit is located in the Altiplano,an extensive North-South trending structural basin that formed in Central-Andean metallogenic belt,Bolivia.The Altiplano poly-metallic province contains sub-volcanic ore展开更多
This studied gold ore belt is giant and very important in China. Its regional tectonics and evolutional process are complicated. There are a few of view points on its geotec-tonic attribute in the Mesozoic and Cenozoi...This studied gold ore belt is giant and very important in China. Its regional tectonics and evolutional process are complicated. There are a few of view points on its geotec-tonic attribute in the Mesozoic and Cenozoic eras and on the type of its some gold ore deposits, especially, on one hosted in the pre-diwa geological bodies. On the basis of the diwa theory, the author discussed the regionalization, and its evolutional process, and some features of diwa tectono-magmatism and diwa type of gold mineralization in this belt. The author proposed that(1)the main body zone is a part of the diwa regime in the Mesozoic and Cenozoic eras, and(2)the diwa tectono-magmatism had a series of features such as universalism and violence, newborn, reform and superimposition, joining, inheritance, multiperiodic activity, complica-tion and so on. The gold mineralization formed in the diwa regime are called diwa type of golddeposits.In this paper the diwa type of endogenetic gold mineralization products hosted in the pre-diwa geological bodies in this zone is discussed in detail.展开更多
Chinese Achaean greenstone belts are mainly distributed along the northern and southwestern margins of the North China platform. In terms of their geological characteristics, the greenstone belts in China are comparab...Chinese Achaean greenstone belts are mainly distributed along the northern and southwestern margins of the North China platform. In terms of their geological characteristics, the greenstone belts in China are comparable to those in other countries but at the same time have unique features of their own. In view of their geochemistry, the Chinese greenstone belts may be grouped into three types: the Jiapigou type, Qingyuan type and Xiaoqinling type. The greenstone belts were formed possibly in a rift-type palaeo-tectonic setting, similar to that of the modern island are-continental margin mobile belts.展开更多
The Huaniushan granite is located at the Beishan orogenic belt, northwestern China. At the contact zone between the granite and marble, a hydrothermal Pb-Zn and skarn Au deposit is formed. LA-ICP-MS zircon U-Pb dating...The Huaniushan granite is located at the Beishan orogenic belt, northwestern China. At the contact zone between the granite and marble, a hydrothermal Pb-Zn and skarn Au deposit is formed. LA-ICP-MS zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 229.5±2.6 Ma (MSDW=0.93) for the Huaniushan granite, imply-ing its Late Triassic intrusion. Geochemistry analyses show that the Huaniushan granite is enriched in Si, K, Na, and REE, and depleted in Mg and Ca, with contents of SiO2 (70.8% to 74.4%), Na2O+K2O (8.8% to 10.2%), CaO (0.93% to 1.44%), and MgO (0.14% to 0.48%). REE is characterized by obvious negative Eu anomaly. Rb, Th, U, K, Pb, Nb, Zr and Hf elements are rich in the granite while Ba, Sr, P, Ti and Eu are deplete. The granite has a high (Zr+Nb+Ce+Y) abundance and 104 Ga/Al ratios. Petrology, major and trace elements data all indicate that the Hua-niushan granite is A-type granite which intruded in a post-collisional extensional tectonic setting. The magma was dominantly sourced from partial melting of crustal intermediate-felsic igneous rocks. Intensive magmatic activities and Au-Cu-Mo mineralization occurred throughout the Beishan orogenic belt during the period from ca. 240 to 220 Ma.展开更多
With aim of providing constraints on the Late Paleozoic tectonic evolution of the southern Central Asian Orogenic Belt(CAOB),an integrated study was conducted on the geochronological and geochemical data for dioritic,...With aim of providing constraints on the Late Paleozoic tectonic evolution of the southern Central Asian Orogenic Belt(CAOB),an integrated study was conducted on the geochronological and geochemical data for dioritic,granitic and diabase dykes from the Aqishan-Yamansu belt in the eastern Tianshan,NW China.Zircon U-Pb dating indicates that the dioritic and granitic dykes were both emplaced in the Late Carboniferous(~311 Ma and^315 Ma).The dioritic dykes show adakitic characteristics and have high Na2 O and positiveεHf(t)values(+12 to+17),which suggest an origin from partial melts of a subducted oceanic slab.The granitic dykes have high SiO2 and K2 O contents and are characterized by en riched light rare earth elements(LREE)and slightly flat heavy rare earth elements(HREE),with negative Eu and Nb-Ta-Ti anomalies.These dykes are alkali-calcic and show geochemical features of highly fractionated Itype granites.Their positiveεHf(t)values(+16 to+17)suggest that they were derived from a juvenile accreted oceanic crustal sou rce.The coeval diabase dykes have low SiO2 and K2 O contents but high TiO2,MgO and Mg#(54-59).They are enriched in LREE and show characteristics of enriched mid-ocean ridge basalts(E-MORB).The relatively high Ba/Th,slightly low Th/Ta ratios,and negative Nb-Ta anomalies imply a mantle source metasomatised by slab-derived fluids.Thus,these basic dykes were generated likely by partial melting of the upwelling asthenosphere mantle with a slight influence of slab-derived fluids.Therefore,we suggest that the formation of these Late Carboniferous dykes were triggered by a post-collisional slab breakoff and the Aqishan-Yamansu belt was a continental arc formed by southdipping subduction of the Kangguer oceanic plate.展开更多
The region around the Karamay-Baikouquan (Ke-Bai) overthrust belt is the richest in hydrocarbon accumulation in the Junggar Basin. Previous research has indicated that oil in the region came from the Fengcheng Forma...The region around the Karamay-Baikouquan (Ke-Bai) overthrust belt is the richest in hydrocarbon accumulation in the Junggar Basin. Previous research has indicated that oil in the region came from the Fengcheng Formation in the Mahu Depression to the northeast of the region, but the oil distribution around the Mahu Depression is remarkably uneven. Large amounts of oil have been found in the Ke-Bai overthrust belt to the west of the depression and only some small oilfields have been discovered in the eastern margin of the depression. This uneven distribution revealed that the oil source of the Ke- Bai region might not be from the Mahu Depression. The oil type distribution and the oil migration pattern revealed in this paper showed that there may be another oil source under the Karamay overthrust. Based on geochemical data, the oil was classified into two types from the sterane and terpane characteristics. Type A oil was mainly distributed in the Huwan area and blocks V and VIII of the Karamay Oilfield in the southern part of the region, while type B oil was mainly distributed in the Baikouquan Oilfield in the northern part of the region. In addition, oil migration pathways and direction were determined by the values of diasterane / regular sterane and C30 moretane / C30 hopane ratios. It is shown that the oil of Huwan area on the hanging wall of the overthrust was mainly charged along the overthrust fault surfaces and then migrated to the west, whereas the oil in blocks V and VIII on the foot wall of the overthrust came from the Mahu Depression in the east. As a result, there may be at least two hydrocarbon source kitchens in the study area. The hydrocarbons in the blocks V and VIII on the footwall of the overthrust belt and in the Baikouquan Oilfield mainly came from the Fengcheng Formation in the Mahu Depression, and the hydrocarbons in the Huwan area on the hanging wall of the overthrust belt may come from another hydrocarbon source kitchen below the overthrust. This recognition indicates that there is substantial exploration potential in the deep Carboniferous strata on the hanging wall of the overthrust belt.展开更多
There is a controversy regarding the amalgamation of Xing’an and Songnen Blocks along the Hegenshan-Heihe Suture(HHS)in the eastern Central Asian Orogenic Belt(CAOB).To solve this problem,we performed detailed study ...There is a controversy regarding the amalgamation of Xing’an and Songnen Blocks along the Hegenshan-Heihe Suture(HHS)in the eastern Central Asian Orogenic Belt(CAOB).To solve this problem,we performed detailed study on the granites from the Zhangdaqi area,adjacent to the north of the HHS in the northern part of the Great Xing’an Range,NE China.Geochemically,the granites in the study area are metaluminous-weak peraluminous and high-K calc-alkaline series.Trace elements of the granites show that LREEs are relatively enriched,while HREEs are relatively deficient and obvious REE fractionation.The granites are characterized by obvious negative Eu anomalies,meanwhile,they are relatively enriched in Rb,K,Th and depleted in Ba,Nb,Sr,P,Ti.All the geochemical features suggest that the granites in the Zhangdaqi area are aluminum A-type granites.The zircon LA-ICP-MS U-Pb ages of these granites are 294-298 Ma,indicating that they formed in the Early Permian.These granites also have positiveεHf(t)values(8.4-14.2)and a relatively young two-stage model age between 449 Ma and 977 Ma,implying that the magma was derived from the re-melting of the Early Paleozoic-Neoproterozoic juvenile crust.Combined with geochemical characteristics(Nb/Ta ratios of 9.0-22.2,and Zr/Hf ratios of 52.3-152.0),we believe that the magmatic source area is a mixture of partial melting of the lower crust and depleted mantle.A-type granites and bimodal volcanic rocks along the Hegenshan-Heihe Suture formed during the Late Carboniferous-Early Permian,indicating that the HHS between Xing’an and Songnen Blocks closed in the late EarlyCarboniferous.Subsequently,the Zhangdaqi area was in a post-orogenic extensional environment from Late Carboniferous to Early Permian and resulted in the formation of the A-type granites.展开更多
文摘The Jinlongshan gold ore belt in southern Shaanxi Province contains a number of Carlin-type gold deposits in the Qinling collisional orogenic belt. Their fluid inclusions are of the Na-Cl- type. From the main metallogenic stage to later stages, the total quantity of anions and cations, temperature and deoxidation parameter (R) for fluid inclusions all gradually decreased, suggesting the gradual intensification of fluid oxidation, the reduction of metallogenic depth and the input of meteoric water and organic components. The deposits were formed during crustal uplifting and hence had similar tectonic settings to orogenic gold deposits. The CO-2 contents and CO-2/H-2O values of the ore fluid increased from early to late stages, and the wall-rock alteration is represented by decarbonation, which is inconsistent with the characteristics of orogenic gold deposits. It is also discovered that Na, K, SO{2-}-4, Cl- and the total amounts of anions and cations in the inclusions in quartz are higher than those in the coexisting calcite. The H, O and C isotope ratios indicate that the ore fluid was sourced from meteoric water and metamorphic devolatilisation of the sedimentary rocks that host the ores. The high background {δ{}{18}O} and {δ{}{13}C} values of wall rocks resulted in high {δ{}{18}O} and {δ{}{13}C} values of ore fluid and also high {δ{}{18}O} and {δ{}{13}C} values of hydrothermal minerals such as quartz and carbonate. The carbon in ore fluid stemmed largely from the hosting strata. The {δ{}{18}O} and {δ{}{13}C} values of Fe-calcite and the δD values of fluid inclusions are lower than those of calcite and quartz. In terms of the theory of coordination chemistry, all these differences can be ascribed to water-rock interaction in the same fluid system, instead, to the multi-source of ore fluid.
文摘The following geochemical types of granitoids have been investigated in the Mongol-Okhotsk belt:tholetitic,palingenic calc-alkaline,latitic,plumasitic and arpaitic rare-metal granites.Plagiogranites of the tholeiitic series occur within the Mongol-Okhotsk suture,indicating a subduction environment.The calc-alkaline granitoids responsible for the batholith-like intrusions and their formation are related to collision environments.The latest granitoids of the latite series and rare-metal granites came into existence after the collision of continental masses,providing evidence of intraplate magmatism.
基金supported by NNSF (No.41572060)projects of CGS (NO.12120113095900)+2 种基金university and company cooperation (2012-01)YM Lab(2011)Innovation Team of Yunnan province and KMUST (2008,2012)
文摘1 Introduction The Laurani porphyry deposit is located in the Altiplano,an extensive North-South trending structural basin that formed in Central-Andean metallogenic belt,Bolivia.The Altiplano poly-metallic province contains sub-volcanic ore
文摘This studied gold ore belt is giant and very important in China. Its regional tectonics and evolutional process are complicated. There are a few of view points on its geotec-tonic attribute in the Mesozoic and Cenozoic eras and on the type of its some gold ore deposits, especially, on one hosted in the pre-diwa geological bodies. On the basis of the diwa theory, the author discussed the regionalization, and its evolutional process, and some features of diwa tectono-magmatism and diwa type of gold mineralization in this belt. The author proposed that(1)the main body zone is a part of the diwa regime in the Mesozoic and Cenozoic eras, and(2)the diwa tectono-magmatism had a series of features such as universalism and violence, newborn, reform and superimposition, joining, inheritance, multiperiodic activity, complica-tion and so on. The gold mineralization formed in the diwa regime are called diwa type of golddeposits.In this paper the diwa type of endogenetic gold mineralization products hosted in the pre-diwa geological bodies in this zone is discussed in detail.
文摘Chinese Achaean greenstone belts are mainly distributed along the northern and southwestern margins of the North China platform. In terms of their geological characteristics, the greenstone belts in China are comparable to those in other countries but at the same time have unique features of their own. In view of their geochemistry, the Chinese greenstone belts may be grouped into three types: the Jiapigou type, Qingyuan type and Xiaoqinling type. The greenstone belts were formed possibly in a rift-type palaeo-tectonic setting, similar to that of the modern island are-continental margin mobile belts.
基金founded by the National Science and Technology Support Program,China(Grant No.2011BAB06B04-05)
文摘The Huaniushan granite is located at the Beishan orogenic belt, northwestern China. At the contact zone between the granite and marble, a hydrothermal Pb-Zn and skarn Au deposit is formed. LA-ICP-MS zircon U-Pb dating yielded a weighted mean 206Pb/238U age of 229.5±2.6 Ma (MSDW=0.93) for the Huaniushan granite, imply-ing its Late Triassic intrusion. Geochemistry analyses show that the Huaniushan granite is enriched in Si, K, Na, and REE, and depleted in Mg and Ca, with contents of SiO2 (70.8% to 74.4%), Na2O+K2O (8.8% to 10.2%), CaO (0.93% to 1.44%), and MgO (0.14% to 0.48%). REE is characterized by obvious negative Eu anomaly. Rb, Th, U, K, Pb, Nb, Zr and Hf elements are rich in the granite while Ba, Sr, P, Ti and Eu are deplete. The granite has a high (Zr+Nb+Ce+Y) abundance and 104 Ga/Al ratios. Petrology, major and trace elements data all indicate that the Hua-niushan granite is A-type granite which intruded in a post-collisional extensional tectonic setting. The magma was dominantly sourced from partial melting of crustal intermediate-felsic igneous rocks. Intensive magmatic activities and Au-Cu-Mo mineralization occurred throughout the Beishan orogenic belt during the period from ca. 240 to 220 Ma.
基金supported by National Natural Science Foundation of China (Grant Nos.41421002and 41603028)MOST Special Fund from the State Key Laboratory of Continental Dynamics
文摘With aim of providing constraints on the Late Paleozoic tectonic evolution of the southern Central Asian Orogenic Belt(CAOB),an integrated study was conducted on the geochronological and geochemical data for dioritic,granitic and diabase dykes from the Aqishan-Yamansu belt in the eastern Tianshan,NW China.Zircon U-Pb dating indicates that the dioritic and granitic dykes were both emplaced in the Late Carboniferous(~311 Ma and^315 Ma).The dioritic dykes show adakitic characteristics and have high Na2 O and positiveεHf(t)values(+12 to+17),which suggest an origin from partial melts of a subducted oceanic slab.The granitic dykes have high SiO2 and K2 O contents and are characterized by en riched light rare earth elements(LREE)and slightly flat heavy rare earth elements(HREE),with negative Eu and Nb-Ta-Ti anomalies.These dykes are alkali-calcic and show geochemical features of highly fractionated Itype granites.Their positiveεHf(t)values(+16 to+17)suggest that they were derived from a juvenile accreted oceanic crustal sou rce.The coeval diabase dykes have low SiO2 and K2 O contents but high TiO2,MgO and Mg#(54-59).They are enriched in LREE and show characteristics of enriched mid-ocean ridge basalts(E-MORB).The relatively high Ba/Th,slightly low Th/Ta ratios,and negative Nb-Ta anomalies imply a mantle source metasomatised by slab-derived fluids.Thus,these basic dykes were generated likely by partial melting of the upwelling asthenosphere mantle with a slight influence of slab-derived fluids.Therefore,we suggest that the formation of these Late Carboniferous dykes were triggered by a post-collisional slab breakoff and the Aqishan-Yamansu belt was a continental arc formed by southdipping subduction of the Kangguer oceanic plate.
文摘The region around the Karamay-Baikouquan (Ke-Bai) overthrust belt is the richest in hydrocarbon accumulation in the Junggar Basin. Previous research has indicated that oil in the region came from the Fengcheng Formation in the Mahu Depression to the northeast of the region, but the oil distribution around the Mahu Depression is remarkably uneven. Large amounts of oil have been found in the Ke-Bai overthrust belt to the west of the depression and only some small oilfields have been discovered in the eastern margin of the depression. This uneven distribution revealed that the oil source of the Ke- Bai region might not be from the Mahu Depression. The oil type distribution and the oil migration pattern revealed in this paper showed that there may be another oil source under the Karamay overthrust. Based on geochemical data, the oil was classified into two types from the sterane and terpane characteristics. Type A oil was mainly distributed in the Huwan area and blocks V and VIII of the Karamay Oilfield in the southern part of the region, while type B oil was mainly distributed in the Baikouquan Oilfield in the northern part of the region. In addition, oil migration pathways and direction were determined by the values of diasterane / regular sterane and C30 moretane / C30 hopane ratios. It is shown that the oil of Huwan area on the hanging wall of the overthrust was mainly charged along the overthrust fault surfaces and then migrated to the west, whereas the oil in blocks V and VIII on the foot wall of the overthrust came from the Mahu Depression in the east. As a result, there may be at least two hydrocarbon source kitchens in the study area. The hydrocarbons in the blocks V and VIII on the footwall of the overthrust belt and in the Baikouquan Oilfield mainly came from the Fengcheng Formation in the Mahu Depression, and the hydrocarbons in the Huwan area on the hanging wall of the overthrust belt may come from another hydrocarbon source kitchen below the overthrust. This recognition indicates that there is substantial exploration potential in the deep Carboniferous strata on the hanging wall of the overthrust belt.
基金supported by China Geological Survey Project (Grant NO. DD20160047-02, DD20190042-03)National Key Research and Development Program (Grant NO. 2017YFC0601300-01, 2017YFC0601401, 2017YFC 0601305-02)Qingdao Leading innovation talents project (19–3–2–19–zhc)
文摘There is a controversy regarding the amalgamation of Xing’an and Songnen Blocks along the Hegenshan-Heihe Suture(HHS)in the eastern Central Asian Orogenic Belt(CAOB).To solve this problem,we performed detailed study on the granites from the Zhangdaqi area,adjacent to the north of the HHS in the northern part of the Great Xing’an Range,NE China.Geochemically,the granites in the study area are metaluminous-weak peraluminous and high-K calc-alkaline series.Trace elements of the granites show that LREEs are relatively enriched,while HREEs are relatively deficient and obvious REE fractionation.The granites are characterized by obvious negative Eu anomalies,meanwhile,they are relatively enriched in Rb,K,Th and depleted in Ba,Nb,Sr,P,Ti.All the geochemical features suggest that the granites in the Zhangdaqi area are aluminum A-type granites.The zircon LA-ICP-MS U-Pb ages of these granites are 294-298 Ma,indicating that they formed in the Early Permian.These granites also have positiveεHf(t)values(8.4-14.2)and a relatively young two-stage model age between 449 Ma and 977 Ma,implying that the magma was derived from the re-melting of the Early Paleozoic-Neoproterozoic juvenile crust.Combined with geochemical characteristics(Nb/Ta ratios of 9.0-22.2,and Zr/Hf ratios of 52.3-152.0),we believe that the magmatic source area is a mixture of partial melting of the lower crust and depleted mantle.A-type granites and bimodal volcanic rocks along the Hegenshan-Heihe Suture formed during the Late Carboniferous-Early Permian,indicating that the HHS between Xing’an and Songnen Blocks closed in the late EarlyCarboniferous.Subsequently,the Zhangdaqi area was in a post-orogenic extensional environment from Late Carboniferous to Early Permian and resulted in the formation of the A-type granites.