A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A mult...A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A multi-step predictive model is developed to estimate the seismic performance of high-rise buildings, taking into account of the effects of nonlinearity, time-variability, model mismatching, and disturbances and uncertainty of controlled system parameters by the predicted error feedback in the multi-step predictive model. Based on the predictive model, a Kalman-Bucy observer suitable for semi-active strategy is proposed to estimate the state vector from the acceleration and semi-active control force feedback. The main advantage of the proposed strategy is its inherent stability, simplicity, on-line real-time operation, and the ability to handle nonlinearity, uncertainty, and time-variability properties of structures. Numerical simulation of the nonlinear seismic responses of a controlled 20-story benchmark building is carried out, and the simulation results are compared to those of other control systems. The results show that the developed semi-active strategy can efficiently reduce the nonlinear seismic response of high-rise buildings.展开更多
This paper proposes an energy management strategy for the benchmark problem of E-COSM 2021 to improve the energy efficiency of hybrid electric vehicles(HEVs)on a road with a slope.We assume that HEVs are in a connecte...This paper proposes an energy management strategy for the benchmark problem of E-COSM 2021 to improve the energy efficiency of hybrid electric vehicles(HEVs)on a road with a slope.We assume that HEVs are in a connected environment with real-time vehicle-to-everything information,including geographic information,vehicle-to-infrastructure information and vehicle-to-vehicle information.The benchmark problem to be solved is based on HEV powertrain control using traffic information to achieve fuel economy improvements while satisfying the constraints of driving safety and travel time.The proposed strategy includes multiple rules and model predictive control(MPC).The rules of this strategy are designed based on external environment information to maintain safe driving and to determine the driving mode.To improve fuel economy,the optimal energy management strategy is primarily considered,and to perform real-time energy management via RHC-based optimization in a connected environment with safety constraints,a key issue is to predict the dynamics of the preceding vehicle during the targeted horizon.Therefore,this paper presents a real-time model-based optimization strategy with learning-based prediction of the vehicle’s future speed.To validate the proposed optimization strategy,a powertrain control simulation platform in a traffic-in-the-loop environment is constructed,and case study results performed on the constructed platform are reported and discussed.展开更多
基金Fujian Province Youth Foundation for InnovativResearch Under Grant No. 2006F3008Fujian ProvincEducational Special Foundation Under Grant No. JA06027
文摘A semi-active strategy for model predictive control (MPC), in which magneto-rheological dampers are used as an actuator, is presented for use in reducing the nonlinear seismic response of high-rise buildings. A multi-step predictive model is developed to estimate the seismic performance of high-rise buildings, taking into account of the effects of nonlinearity, time-variability, model mismatching, and disturbances and uncertainty of controlled system parameters by the predicted error feedback in the multi-step predictive model. Based on the predictive model, a Kalman-Bucy observer suitable for semi-active strategy is proposed to estimate the state vector from the acceleration and semi-active control force feedback. The main advantage of the proposed strategy is its inherent stability, simplicity, on-line real-time operation, and the ability to handle nonlinearity, uncertainty, and time-variability properties of structures. Numerical simulation of the nonlinear seismic responses of a controlled 20-story benchmark building is carried out, and the simulation results are compared to those of other control systems. The results show that the developed semi-active strategy can efficiently reduce the nonlinear seismic response of high-rise buildings.
基金supported by the National Natural Science Foundation of China(No.61973053).The authors would like to thank the Toyota Motor Corporation for the technical support on this research work..
文摘This paper proposes an energy management strategy for the benchmark problem of E-COSM 2021 to improve the energy efficiency of hybrid electric vehicles(HEVs)on a road with a slope.We assume that HEVs are in a connected environment with real-time vehicle-to-everything information,including geographic information,vehicle-to-infrastructure information and vehicle-to-vehicle information.The benchmark problem to be solved is based on HEV powertrain control using traffic information to achieve fuel economy improvements while satisfying the constraints of driving safety and travel time.The proposed strategy includes multiple rules and model predictive control(MPC).The rules of this strategy are designed based on external environment information to maintain safe driving and to determine the driving mode.To improve fuel economy,the optimal energy management strategy is primarily considered,and to perform real-time energy management via RHC-based optimization in a connected environment with safety constraints,a key issue is to predict the dynamics of the preceding vehicle during the targeted horizon.Therefore,this paper presents a real-time model-based optimization strategy with learning-based prediction of the vehicle’s future speed.To validate the proposed optimization strategy,a powertrain control simulation platform in a traffic-in-the-loop environment is constructed,and case study results performed on the constructed platform are reported and discussed.
文摘蜣螂优化器(dung beetle optimizer,DBO)是一种有效的元启发式算法。蜣螂优化算法虽然具有寻优能力强,收敛速度快的特点,但同时也存在全局探索和局部开发能力不平衡,容易陷入局部最优,且全局探索能力较弱的缺点。提出了一种改进的DBO算法来解决全局优化问题,命名为MSADBO。受改进正弦算法(improved sine algorithm,MSA)的启发,赋予蜣螂MSA的全局探索和局部开发能力,扩大其搜索范围,提高全局探索能力,减少陷入局部最优的可能性。同时加入了混沌映射初始化和变异算子进行扰动。为了验证MSADBO的有效性,对该算法采用23个基准测试函数进行了测试,并与其他知名的元启发式算法进行了比较。结果表明,该算法具有良好的性能。为了进一步阐述MSADBO算法的实际应用潜力,将该算法成功地应用于3个工程设计问题。实验结果表明,所提出的MSADBO算法可以有效地处理实际应用问题。