Based on the crack tip field expansion of the Reissner plate, a special high order bending crack tip element is developed, and the element stiffness matrix is given in the explicit form, which is especially convenien...Based on the crack tip field expansion of the Reissner plate, a special high order bending crack tip element is developed, and the element stiffness matrix is given in the explicit form, which is especially convenient for engineering analyses. A numerical example is presented and compared with previous results to demonstrate the efficiency and accuracy of the special element.展开更多
This paper presents a curvilinear boundary quadrilateral element for the problem of thin plate of bending with curvilinear boundary. A coordinate transformation of two dimensions is performed in the calculation of FEM...This paper presents a curvilinear boundary quadrilateral element for the problem of thin plate of bending with curvilinear boundary. A coordinate transformation of two dimensions is performed in the calculation of FEM. The introduction of an additional stiffness matrix based on the generalized variational principles results in high accuracy and less computation time. The numerical results agree with the analytical solution very well.展开更多
We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose ...We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M&LT joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.展开更多
The buckling response of pipe-in-pipe(PIP)systems subjected to bending is investigated in this paper. A set of parameterized models are established to explore the bending characteristics of the PIP systems through eig...The buckling response of pipe-in-pipe(PIP)systems subjected to bending is investigated in this paper. A set of parameterized models are established to explore the bending characteristics of the PIP systems through eigenvalue buckling analysis and nonlinear post-buckling analysis. The results show that the length of PIP systems and the height of centralizers are the most significant factors that influence the buckling moment, ultimate bending moment and buckling mode; the other geometric characteristics, such as initial geometric imperfection and friction between centralizers and outer pipes, evidently influence the post-buckling path and ductility of PIPs; the equivalent bending stiffness is dependent on the length and centralizers. Moreover, the range of equivalent bending stiffness is also discussed.展开更多
We propose a class of 12 degrees of freedom triangular plate bending elements with quadratic rate of convergence.They may be viewed as the second order Specht triangle,while the Specht triangle is one of the best firs...We propose a class of 12 degrees of freedom triangular plate bending elements with quadratic rate of convergence.They may be viewed as the second order Specht triangle,while the Specht triangle is one of the best first order plate bending element.The convergence result is proved under minimal smoothness assumption on the solution.Numerical results for both the smooth solution and nonsmmoth solution confirm the theoretical prediction.展开更多
文摘Based on the crack tip field expansion of the Reissner plate, a special high order bending crack tip element is developed, and the element stiffness matrix is given in the explicit form, which is especially convenient for engineering analyses. A numerical example is presented and compared with previous results to demonstrate the efficiency and accuracy of the special element.
文摘This paper presents a curvilinear boundary quadrilateral element for the problem of thin plate of bending with curvilinear boundary. A coordinate transformation of two dimensions is performed in the calculation of FEM. The introduction of an additional stiffness matrix based on the generalized variational principles results in high accuracy and less computation time. The numerical results agree with the analytical solution very well.
文摘We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M&LT joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints.
基金Supported by the National Basic Research Program of China("973" Program,No.2014CB046801)
文摘The buckling response of pipe-in-pipe(PIP)systems subjected to bending is investigated in this paper. A set of parameterized models are established to explore the bending characteristics of the PIP systems through eigenvalue buckling analysis and nonlinear post-buckling analysis. The results show that the length of PIP systems and the height of centralizers are the most significant factors that influence the buckling moment, ultimate bending moment and buckling mode; the other geometric characteristics, such as initial geometric imperfection and friction between centralizers and outer pipes, evidently influence the post-buckling path and ductility of PIPs; the equivalent bending stiffness is dependent on the length and centralizers. Moreover, the range of equivalent bending stiffness is also discussed.
基金The work of Li was supported by Science Challenge Project,No.TZ2016003The work of Ming was partially supported by the National Natural Science Foundation of China for Distinguished Young Scholars 11425106+2 种基金National Natural Science Foundation of China grants 91630313by the support of CAS NCMISThe work of Shi was partially supported by the National Natural Science Foundation of China grant 11371359.
文摘We propose a class of 12 degrees of freedom triangular plate bending elements with quadratic rate of convergence.They may be viewed as the second order Specht triangle,while the Specht triangle is one of the best first order plate bending element.The convergence result is proved under minimal smoothness assumption on the solution.Numerical results for both the smooth solution and nonsmmoth solution confirm the theoretical prediction.