期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Bending failure of a concrete gravity dam subjected to underwater explosion 被引量:5
1
作者 Xie-ping HUANG Jing HU +2 位作者 Xue-dong ZHANG Zi-tao ZHANG Xiang-zhen KONG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第12期976-991,共16页
Dam structures are prime targets during wars,and a tragedy is likely to happen in a populated area downstream of a dam exposed to explosions.However,experimental investigations of the failure of a concrete gravity dam... Dam structures are prime targets during wars,and a tragedy is likely to happen in a populated area downstream of a dam exposed to explosions.However,experimental investigations of the failure of a concrete gravity dam subjected to underwater explosion(UNDEX)are extremely scarce.In this study,centrifuge tests and numerical simulations were performed to investigate the failure of a concrete gravity dam subjected to a near-field UNDEX.The results revealed the existence of two tensile fractures inside the dam,one in the upper part and the other in the lower part.Due to the narrowness of the upper part,there were coupled effects of bending tensile loads in the upstream face and a reflected tensile stress wave in the downstream face,resulting in severe tensile damage to the upper part in both the upstream and downstream faces.The fracture in the lower part was measured at around one third of the height of the dam.This fracture was produced mainly by the bending tensile loads in the upstream face.Driven by those loads,this fracture started from the upstream face and developed towards the downstream face,with a horizontal angle of about 15?.The underlying mechanisms behind the two tensile fractures were confirmed by recorded strain histories.The dam failures presented in this study are similar to those produced in historical wars,in which dams were under similar attack scenarios. 展开更多
关键词 Centrifuge test Numerical simulation Concrete gravity dam Underwater explosion(UNDEX) bending failure
原文传递
Finite element analysis of stress and strain distributions in mortise and loose tenon furniture joints 被引量:6
2
作者 Mohammad Derikvand Ghanbar Ebrahimi 《Journal of Forestry Research》 SCIE CAS CSCD 2014年第3期677-681,共5页
We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&amp;LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose ... We studied the effect of loose tenon dimensions on stress and strain distributions in T-shaped mortise and loose tenon (M&amp;LT) furni-ture joints under uniaxial bending loads, and determined the effects of loose tenon length (30, 45, 60, and 90 mm) and loose tenon thickness (6 and 8 mm) on bending moment capacity of M&amp;LT joints constructed with polyvinyl acetate (PVAc) adhesive. Stress and strain distributions in joint elements were then estimated for each joint using ANSYS finite element (FE) software. The bending moment capacity of joints increased significantly with thickness and length of the tenon. Based on the FE analysis results, under uniaxial bending, the highest shear stress values were obtained in the middle parts of the tenon, while the highest shear elastic strain values were estimated in glue lines between the tenon sur-faces and walls of the mortise. Shear stress and shear elastic strain values in joint elements generally increased with tenon dimensions and corre-sponding bending moment capacities. There was consistency between predicted maximum shear stress values and failure modes of the joints. 展开更多
关键词 bending moment capacity failure mode finite element furniture mortise and loose tenon joint stress and strain distributions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部