期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire 被引量:4
1
作者 Jin-Gang Jiang Ying-Shuai Han +3 位作者 Yong-De Zhang Yan-Jv Liu Zhao Wang Yi Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第6期1406-1415,共10页
Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement ... Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a spring- back calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback mea- surement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the move- ment of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision. 展开更多
关键词 robotic bending Rectangular orthodonticarchwire Springback mechanism Stress-strain-neutrallayer
下载PDF
Stability margin of the quadruped bionic robot with spinning gait 被引量:2
2
作者 雷静桃 Jiang Yunqi Ren Mingming 《High Technology Letters》 EI CAS 2017年第3期229-237,共9页
Spinning gait is valuable for quadruped robot,which can be used to avoid obstacles quickly for robot walking in unstructured environment. A kind of bionic flexible body is presented for quadruped robot to perform the ... Spinning gait is valuable for quadruped robot,which can be used to avoid obstacles quickly for robot walking in unstructured environment. A kind of bionic flexible body is presented for quadruped robot to perform the spinning gait. The spinning gait can be achieved by coordinated movement of body laterally bending and legs swing,which can improve the mobility of robot walking in the unstructured environments. The coordinated movement relationship between the body and the leg mechanism is presented. The stability of quadruped robot with spinning gait is analyzed based on the center of gravity( COG) projection method. The effect of different body bending angle on the stability of quadruped robot with spinning gait is mainly studied. For the quadruped robot walking with spinning gait,during one spinning gait cycle,the supporting polygon and the trajectory of COG projection point under different body bending angle are calculated. Finally,the stability margin of quadruped robot with spinning gait under different body bending angle is determined,which can be used to evaluate reasonableness of spinning gait parameters. 展开更多
关键词 quadruped robot bionic body spinning gait stability margin body bending
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部