Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering...Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering community because of its simplicity,stability,and flexibility in testing and evaluation.The SCB test has become a common method to study the cracking resistance of asphalt mixture in recent years.This paper mainly summarizes the overview of the SCB test,summarizes some research results and common characterization parameters of the SCB test method in monotone test and fatigue test in recent years,and predicts and suggests the research direction of the SCB test in the future.It is found that the research on the monotonic SCB test is more comprehensive,and the research on the SCB fatigue test needs to be further improved in the aspects of loading mode,characterization parameter selection,and so on.Researchers can flexibly adjust the geometric dimensions and the test parameters of semi-cylindrical specimens,and conduct comprehensive analysis combined with the results of numerical simulation.The crack resistance of asphalt mixture can be comprehensively evaluated by fracture energy,fracture toughness,stiffness,flexibility index and other fracture indicators,combined with the crack propagation of the specimen.The analysis of numerical simulation can confirm the test results.In order to standardize the setting of fatigue parameters for future application,it is necessary to standardize the setting of bending performance.展开更多
In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive mod...In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios.展开更多
This research studied the ultimate bearing capacity of laminated bamboo lumber(LBL)unit and thereby calculated the maximum bending moment.The load-displacement chart for all specimens was obtained.Then the flexural ca...This research studied the ultimate bearing capacity of laminated bamboo lumber(LBL)unit and thereby calculated the maximum bending moment.The load-displacement chart for all specimens was obtained.Then the flexural capacity of members with and without bamboo nodes in the middle section was coMPared.The bending experiment phenomenon of LBL unit was concluded.Different failure modes of bending components were analysed and concluded.Finally,the bending behaviour of LBL units is coMPared with other bamboo and timber products.It is shown that the average ultimate load of BS members is 866.1 N,the average flexural strength is 101 MPa,the average modulus of elasticity is 8.3 GPa,and the average maximum displacement is 17.02 mm.The average ultimate load of BNS members is 1008.1 N,the average flexural strength is 118.02 MPa,the average modulus of elasticity is 9.9 GPa,and the average maximum displacement is 18.26 mm.Laminated bamboo lumber(LBL)unit without bamboo nodes(BNS)has relatively higher flexural strength coMPared with LBL unit with bamboo nodes(BS).The presence of bamboo nodes reduces the strength of the entire structure.Three failure modes were concluded for BS members,and two failure modes were observed for BNS members during the experimental process.According to a coMParison between the LBL unit and other products,the flexural strength and bending modulus of elasticity of the LBL unit are similar as bamboo scrimber and raw bamboo components,which is much higher than timber components.展开更多
The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the ...The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.展开更多
Through the development of marine energy,marine cables are the key equipment for transmission of electrical energy between surface platforms and underwater facilities.Fatigue failure is a critical failure mode of mari...Through the development of marine energy,marine cables are the key equipment for transmission of electrical energy between surface platforms and underwater facilities.Fatigue failure is a critical failure mode of marine cables.The bending performance of the cable conductor has a major influence on both bending and fatigue performances of the overall cable structure.To study the influence of different types of the conductor cross-section on the bending performances of marine cable conductors,three types of copper conductors with the same cross-sectional area,i.e.,noncompressed round,compressed round,and shaped wire conductors,were selected.The experimental results demonstrated that the cross-section type significantly affects the bending performances of copper conductors.In particular,the bending stiffness of the shaped wire conductor is the highest among the three conductor types.Four key evaluation parameters,i.e.,the bending stiffness,maximum bending moment,envelope area,and engineering critical slip point,were selected to compare and analyze the bending hysteresis curves of the three copper conductors.The differences in the key evaluation parameters were analyzed based on the structural dimensional parameters,processing methods,and classical bending stiffness theoretical models of the three copper conductor types.The results provide an important theoretical guidance for the structural design and engineering applications of marine cable conductors.展开更多
Bamboo became the best material choice for sustainable construction because it is fully renewable materials. Indonesian people traditionally choose bamboo for their housing since a long time ago. Bamboo stems usually ...Bamboo became the best material choice for sustainable construction because it is fully renewable materials. Indonesian people traditionally choose bamboo for their housing since a long time ago. Bamboo stems usually have unique shape. Its geometrical shape assumed as tapered hollow pipe. This study aims to find the effect of bamboo taper to its strength properties on center point bending test. The ratio between the Modulus of Rupture (S~) calculated in the center point, and the maximum bending stress along the beam is called strength ratio of taper (Ct). The theoretical calculation results Ct value is 1 if the taper lower than 0.023, while Ct value become lower if the taper is higher than 0.023. The survey on Ampel (Bambusa vulgaris Schrad.), Tali (Gigantochloa apus (BI. Ex Schult. f) Kurz), Gombong (Gigantochloa verticillata (Willd.) Munro), and Mayan (Gigantochloa robusta Kurz.) found that the overall taper range is -0.0047-0.0088 and 0-0.0127 for inner and outer taper respectively. On that overall range the Ct value is always 1, so it is reasonable to ignore the taper effect on one point bending test.展开更多
The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this...The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this pressure with the friction and wear generated. Since there are many studies that determine the coefficient of friction in sheet metal forming by bending under tension (BUT) test, the contact pressure between the pin and the sheet was measured using a film that has the ability to record the applied pressure. The vertical force applied to pin was also measured. The results indicate that the vertical force is more accurate to set the contact pressure that using equations predetermined. It was also observed that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. The friction coefficient was determined for the BUT test through several equations proposed by various authors in order to check if there is much variation between the results. It was observed that the friction coefficient showed little variation for each equation, and each one can be used. The material used was the commercially pure aluminum, alloy Al1100.展开更多
The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half c...The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half couplings) along with its experimental verification. In the finite element model, composite reinforcement plies have been characterized by linear orthotropic material model, while rubber liners have been described by a two-parameter MooneyRivlin model. Force-displacement curves of three-point bending show fairly good agreement between simulation results and experimental data. Reaction forces of FE simulation and experiment of standard bending test are in good agreement.展开更多
In this study, the bending test is used to investigate the glass transition temperature for epoxy reinforced with three types ot fibers, fiberglass, Kevlar and synthetic wool, these materials have a wide used in many ...In this study, the bending test is used to investigate the glass transition temperature for epoxy reinforced with three types ot fibers, fiberglass, Kevlar and synthetic wool, these materials have a wide used in many application which they are used composite materials. The glass transition temperature can be measured at the point of inflection for "the curve of variation of the deflection and temperature. The results show that, the glass transition temperature is affected by the type of the reinforcement of the composites. On the other hand, the glass transition temperature of the wool composite is higher than the other.展开更多
For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining techniq...For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining technique is undoubtedly the most suitable mining method.The downward filling mining technique may eliminate the troubles relating to poor ore deposit conditions,such as production safety,ore loss rate,and depletion rate.However,in this technique,the safety of the artificial roof of the next stratum is of paramount importance.Cementitious tailings backfilling(CTB)that is not sufficiently cemented and causes collapses could threaten ore production.This paper explores a diamond-shaped composite structure to mimic the stability of a glued false roof in an actual infill mine based on the recently emerged three-dimensional(3D)printing technology.Experimental means such as three-point bending and digital image correlation(DIC)techniques were used to explore the flexural characteristics of 3D construction specimens and CTB combinations with different cement/tailings weight ratios at diverse layer heights.The results show that the 3D structure with a 14-mm ply height and CTB has strong flexural characteristics,with a maximum deflection value of 30.1 mm,while the 3D-printed rhomboid polymer(3D-PRP)structure with a 26-mm ply height is slightly worse in terms of flexural strength characteristics,but it has a higher maximum flexural strength of 2.83 MPa.A combination of 3D structure and CTB has more unique mechanical properties than CTB itself.This research work offers practical knowledge on the artificial roof performance of the downward layered filling mining technique and builds a scientific knowledge base regarding the successful application of CTB material in mines.展开更多
Fracture propagation is affected by multi-metal-veins formed by geological diagenesis in shale during the hydraulic fracturing.However,the influence of multi-metal-veins on fractures propagation remains unclear.To sol...Fracture propagation is affected by multi-metal-veins formed by geological diagenesis in shale during the hydraulic fracturing.However,the influence of multi-metal-veins on fractures propagation remains unclear.To solve the problem,based on the semi-circle bending(SCB)test and the extended finite element(XFEM)theory,the interaction between multi-metal-veins and fractures is investigated.The experimental results reveal that the fractures usually deflect at the upper or lower interfaces between metal veins and rocks(e.g.the specimen S-2),which is different from the propagation behavior of fractures in calcite veins.Meanwhile,the fracture toughness of the specimen S-1 is 24.40%higher than that of the specimen S-2,indicating that the increasing of total thickness of multiple metal veins in-creases the resistance to the fracture vertical propagation.The simulation results show that the increasing of the number,total thickness of veins,the modulus difference between veins and rock,the approach angle and the notch angle all increase the resistance of the fracture passing through metal veins.The maximum deviation distance(Dmax)of the fracture decreases with the number of veins,while thickness combination types of metal veins do not affect Dmax.The reduction of the notch angle leads to the more tortuous fracture propagation path.Finally,we propose a new comprehensive fracture network pattern.Fracture networks are divided into two categories,including orthogonal fracture networks and sub-orthogonal fracture networks,and then divided into six sub-categories further.The research results will provide reference for hydraulic fracturing of shale reservoirs containing multi-metal-veins.展开更多
The fracture properties of epoxy asphalt mixtures (EAM) are evaluated based on J-integral and ultimate strength. Totally 60 semi-circular bending (SCB)specimens cored from superpave gyratory compactor (SGC)with ...The fracture properties of epoxy asphalt mixtures (EAM) are evaluated based on J-integral and ultimate strength. Totally 60 semi-circular bending (SCB)specimens cored from superpave gyratory compactor (SGC)with three groups of notch depths are tested at the temperature of - 10 and 20 ℃. The experimental results reveal good repeatability in EAM characterization. The tensile strength ratio of SCB to the indirect tensile test (IDT) is at a range of 1.4 to 1.7, and the ultimate strength of EAM is exponentially dependent on the notch depths. At the test temperatures, the critical J-integral value of EAM is much higher than that of hot mix asphalt( HMA) with thermoplastic asphalt binder. The response mode of EAM changes from ductile mode to brittle mode and the fracture energy increases 30% when temperature decreases from 20 to - 10℃, while its critical J-integral value decreases only 15%. It is concluded that EAM has better fracture resistance than thermo-plastic HMA; more fracture energy is needed to initiate cracks in EAM at low temperature, and the cracks propagate more rapidly than at room temperature.展开更多
High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and...High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and thus the fracture mechanism of the coating under external loading.In this study,the interdiffusion behavior in a magnetron sputtered Cr coating deposited on a Zr-4 alloy was studied in a vacuum environment at 1160C.In addition,the effect of interdiffusion on the microcracking behavior of the Cr coating was determined by in situ three-point bending tests.The experimental results show that the interdiffusion behavior resulted in the formation of a ZrCr2 layer,accompanied by the consumption of Cr coating and interfacial roughening.The growth of the diffusion layer followed a nearly parabolic law with respect to annealing time,and the residual stress of the annealed coating decreased with increasing annealing time.Under external loading,a large number of cracks were generated in the brittle interlayer,and some interfacial cracks were formed and grew at the ZrCr2/Zr-4 interface.Despite the remarkable microcracks in the ZrCr2 layer,the vacuum-annealed Cr coating has significantly fewer cracks than the original coating,mainly because of the recrystallization of the coating during annealing.展开更多
The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing v...The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing vital functions.The alloy consists of an a-Mg matrix and a eutectic composed of a-Mg4-Ca2Mg6Zn3.The eutectic product enhances the mechanical properties of the studied alloy,causing strengthening and providing superior hardness values.In this alloy,cracks initiate at the intermetallic compounds and progress through the matrix because of the open network formed by the eutectics.Attending to the corrosion results,the eutectic product presents a noble potential compared to the a-Mg phase.For this reason,the corrosion progresses preferentially through the matrix,avoiding the(α-Mg+Ca2Mg6Zri3)eutectic product,when the alloy is in direct contact to Hank's solution.展开更多
Six kinds of micro bridge-beam specimens with different sizes are fabricated using photolithography technology for bending test. Beam specimens with trapezoidal section could be representatives of those with rectangle...Six kinds of micro bridge-beam specimens with different sizes are fabricated using photolithography technology for bending test. Beam specimens with trapezoidal section could be representatives of those with rectangle and square section, which are usually applied in MEMS. Nano indentation method used in bending test can be applied to both elastic and plastic materials. Also, some mechanical properties parameters such as the modulus of elasticity, hardness and the bending strength are obtained. The average modulus of elasticity of SCS is 170.295 0±2.485 0 GPa, showing no size effects, but the bending strength ranges from 3.24 GPa to 10.15 GPa, displaying strong size effects, and the average hardness is 9.496 7±1.753 3 GPa,in which no obvious size effects are observed.展开更多
Fine and coarse aggregates play an important role in the fracture of concrete. However, quantitative information available on the effect of the coarse aggregate size on the fracture properties of concrete is still lim...Fine and coarse aggregates play an important role in the fracture of concrete. However, quantitative information available on the effect of the coarse aggregate size on the fracture properties of concrete is still limited. In the present paper, the effect of coarse aggregate size (single grade of 5~10, 10~16, 16~20 and 20~25 mm) on stress-crack opening (σ-w) relation in normal and high strength concretes (compressive strength of 40 and 80 MPa, respectively) was studied. The investigation was based on three-point bending tests implemented by fictitious crack analysis. The result shows that coarse aggregate size and cement matrix strength significantly influence the shape of σ-w curve. For a given total aggregate content, in normal strength concrete, smaller size of aggregate leads to a high tensile strength and a sharp stress drop after the peak stress. The smaller the coarse aggregate, the steeper the σ-w curve. By contrast, in high strength concrete, the effect of aggregate size on σ-w relation almost vanishes. A similar σ-w relation is obtained for the concrete except for the case of 20~25 mm coarse aggregate size. The stress drop after the peak stress is more significant for high strength concrete than that for normal strength concrete. Meanwhile, the smaller the coarse aggregate size, the higher the flexural strength. Fracture energy and characteristic length increase with increasing coarse aggregate size in both normal and high strength concretes.展开更多
The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (P...The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (PMMA) denture-base resins. Specimens (n= 10) were fabricated from a conventional heat-activated QC-20 (Qc-) and a microwave heat-activated Acron MC (Ac-) PMMA resins. Powder/ liquid ratio followed the manufacturer's instructions for the control groups (Qc-c and Ac-c) and for the copolymer groups, the resins were prepared with 5% (-5), 10% (- 10), 15% (- 15) and 20% (-20) acrylamide contents, according to the molecular weight ratio, respectively. The flexural strength and flexural modulus were measured by a three-point bending test. The data obtained were statistically analyzed by Kruskal-Wallis test (a=O.05) to determine significant differences between the groups, The chemical structures of the resins were characterized by the nuclear magnetic resonance spectroscopy. Thermal stabilities were determined by thermogravimetric analysis (TGA) with a heating rate of 10 ~C.min-1 from 35 ~C to 600 ~C. Control groups from both acrylic resins showed the lowest flexural strength values. Qc-15 showed significant increase in the flexural strength when compared to Qc-c (P〈O.01). Ac-10 and Ac-15 showed significance when compared to Ac-c (P〈O.01). Acrylamide incorporation increased the elastic modulus in Qc-10, Qc-15 and Qc-20 when compared to Qc-c (P〈0.01). Also significant increase was observed in Ac-10, Ac-15 and Ac-20 copolymer groups when compared to Ac-c (P〈0.01). According to the 1H-nuclear magnetic resonance (NMR) results, acrylamide copolymerization was confirmed in the experimental groups. TGA results showed that the thermal stability of PMMA is increased by the insertion of AAm.展开更多
For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant con...For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent,CaCO3, in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope(SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials.展开更多
Stress relaxation behavior of two turbine bolt steels was evaluated by the manual-controlled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled ten...Stress relaxation behavior of two turbine bolt steels was evaluated by the manual-controlled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled tensile stress relaxation test (TSRT) is discussed and carried out on a general creep testing machine. And then, the experimental results from such type of test were compared to the existing data provided by certain Laboratory U.K. Overall good agreement between the results of manual-controlled TSRT method and the existing data provides confidence in the use of the proposed method in practice. Finally, the experimental results of turbine bolt steels from TSRT were compared with that of bending test. It is observed that great difference exists between the results from two different type stress relaxation tests. It is therefore suggested that the results from TSRT method be adopted in turbine bolt design in engineering.展开更多
The paper gives an overview on experimental observations of the failure behavior of electrically insulating and conducting cracks in piezoelectric ce- ramics.The experiments include the indentation fracture test,the b...The paper gives an overview on experimental observations of the failure behavior of electrically insulating and conducting cracks in piezoelectric ce- ramics.The experiments include the indentation fracture test,the bending test on smooth samples,and the fracture test on pre-notched(or pre-cracked)compact ten- sion samples.For electrically insulating cracks,the experimental results show a com- plicated fracture behavior under electrical and mechanical loading.Fracture data are much scattered when a static electric field is applied.A statistically based frac- ture criterion is required.For electrically conducting cracks,the experimental results demonstrate that static electric fields can fracture poled and depoled lead zirconate titanate ceramics and that the concepts of fracture mechanics can be used to mea- sure the electrical fracture toughness.Furthermore,the electrical fracture toughness is much higher than the mechanical fracture toughness.The highly electrical fracture toughness arises from the greater energy dissipation around the conductive crack tip under purely electric loading,which is impossible under mechanical loading in the brittle ceramics.展开更多
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(No.51968006).
文摘Although there are many kinds of fracture tests to choose from in evaluating the crack resistance of asphalt mixture,the semi-circular bending(SCB)test has attracted a lot of attention in the academic road engineering community because of its simplicity,stability,and flexibility in testing and evaluation.The SCB test has become a common method to study the cracking resistance of asphalt mixture in recent years.This paper mainly summarizes the overview of the SCB test,summarizes some research results and common characterization parameters of the SCB test method in monotone test and fatigue test in recent years,and predicts and suggests the research direction of the SCB test in the future.It is found that the research on the monotonic SCB test is more comprehensive,and the research on the SCB fatigue test needs to be further improved in the aspects of loading mode,characterization parameter selection,and so on.Researchers can flexibly adjust the geometric dimensions and the test parameters of semi-cylindrical specimens,and conduct comprehensive analysis combined with the results of numerical simulation.The crack resistance of asphalt mixture can be comprehensively evaluated by fracture energy,fracture toughness,stiffness,flexibility index and other fracture indicators,combined with the crack propagation of the specimen.The analysis of numerical simulation can confirm the test results.In order to standardize the setting of fatigue parameters for future application,it is necessary to standardize the setting of bending performance.
基金funding support from the National Key Research and Development Program of China(Grant No.2022YFC3102402)as well as from the National Natural Science Foundation of China(Grant No.51879257).
文摘In nature,there are widely distributed bi-modulus materials with different deformation characteristics under compressive and tensile stress states,such as concrete,rock and ceramics.Due to the lack of constitutive model that could reasonably consider the bi-modulus property of materials,and the lack of simple and reliable measurement methods for the tensile elastic parameters of materials,scientists and engineers always neglect the effect of the bi-modulus property of materials in engineering design and numerical simulation.To solve this problem,this study utilizes the uncoupled strain-driven constitutive model proposed by Latorre and Montáns(2020)to systematically study the distributions and magnitudes of stresses and strains of bi-modulus materials in the three-point bending test through the numerical method.Furthermore,a new method to synchronously measure the tensile and compressive elastic moduli of materials through the four-point bending test is proposed.The numerical results show that the bi-modulus property of materials has a significant effect on the stress,strain and displacement in the specimen utilized in the three-point and four-point bending tests.Meanwhile,the results from the numerical tests,in which the elastic constitutive model proposed by Latorre and Montáns(2020)is utilized,also indicate that the newly proposed measurement method has a good reliability.Although the new measurement method proposed in this study can synchronously and effectively measure the tensile and compressive elastic moduli,it cannot measure the tensile and compressive Poisson’s ratios.
基金The research work presented in this paper is supported by the National Natural Science Foundation of China(Nos.51878354&51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)practical and innovation training project of Nanjing Forestry University(2019NFUSPITP0496,2020NFUSPITP0378,202010298039Z).Any research results expressed in this paper are those of the writers and do not necessarily reflect the views of the foundations。
文摘This research studied the ultimate bearing capacity of laminated bamboo lumber(LBL)unit and thereby calculated the maximum bending moment.The load-displacement chart for all specimens was obtained.Then the flexural capacity of members with and without bamboo nodes in the middle section was coMPared.The bending experiment phenomenon of LBL unit was concluded.Different failure modes of bending components were analysed and concluded.Finally,the bending behaviour of LBL units is coMPared with other bamboo and timber products.It is shown that the average ultimate load of BS members is 866.1 N,the average flexural strength is 101 MPa,the average modulus of elasticity is 8.3 GPa,and the average maximum displacement is 17.02 mm.The average ultimate load of BNS members is 1008.1 N,the average flexural strength is 118.02 MPa,the average modulus of elasticity is 9.9 GPa,and the average maximum displacement is 18.26 mm.Laminated bamboo lumber(LBL)unit without bamboo nodes(BNS)has relatively higher flexural strength coMPared with LBL unit with bamboo nodes(BS).The presence of bamboo nodes reduces the strength of the entire structure.Three failure modes were concluded for BS members,and two failure modes were observed for BNS members during the experimental process.According to a coMParison between the LBL unit and other products,the flexural strength and bending modulus of elasticity of the LBL unit are similar as bamboo scrimber and raw bamboo components,which is much higher than timber components.
基金financially supported by the Commercial Aircraft Corporation of China, Ltd.
文摘The microstructure evolution and damage development of the third-generation Al-Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.
基金financially supported by the National Natural Science Foundation of China(Grant No.U1906233)the Key R&D Program of Shandong Province(Grant No.2019JZZY010801)+1 种基金the Development Projects in Key Areas of Guangdong Province(Grant No.2020B1111040002)the Fundamental Research Funds for the Central Universities(Grant Nos.DUT20ZD213 and DUT20LAB308)。
文摘Through the development of marine energy,marine cables are the key equipment for transmission of electrical energy between surface platforms and underwater facilities.Fatigue failure is a critical failure mode of marine cables.The bending performance of the cable conductor has a major influence on both bending and fatigue performances of the overall cable structure.To study the influence of different types of the conductor cross-section on the bending performances of marine cable conductors,three types of copper conductors with the same cross-sectional area,i.e.,noncompressed round,compressed round,and shaped wire conductors,were selected.The experimental results demonstrated that the cross-section type significantly affects the bending performances of copper conductors.In particular,the bending stiffness of the shaped wire conductor is the highest among the three conductor types.Four key evaluation parameters,i.e.,the bending stiffness,maximum bending moment,envelope area,and engineering critical slip point,were selected to compare and analyze the bending hysteresis curves of the three copper conductors.The differences in the key evaluation parameters were analyzed based on the structural dimensional parameters,processing methods,and classical bending stiffness theoretical models of the three copper conductor types.The results provide an important theoretical guidance for the structural design and engineering applications of marine cable conductors.
文摘Bamboo became the best material choice for sustainable construction because it is fully renewable materials. Indonesian people traditionally choose bamboo for their housing since a long time ago. Bamboo stems usually have unique shape. Its geometrical shape assumed as tapered hollow pipe. This study aims to find the effect of bamboo taper to its strength properties on center point bending test. The ratio between the Modulus of Rupture (S~) calculated in the center point, and the maximum bending stress along the beam is called strength ratio of taper (Ct). The theoretical calculation results Ct value is 1 if the taper lower than 0.023, while Ct value become lower if the taper is higher than 0.023. The survey on Ampel (Bambusa vulgaris Schrad.), Tali (Gigantochloa apus (BI. Ex Schult. f) Kurz), Gombong (Gigantochloa verticillata (Willd.) Munro), and Mayan (Gigantochloa robusta Kurz.) found that the overall taper range is -0.0047-0.0088 and 0-0.0127 for inner and outer taper respectively. On that overall range the Ct value is always 1, so it is reasonable to ignore the taper effect on one point bending test.
文摘The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this pressure with the friction and wear generated. Since there are many studies that determine the coefficient of friction in sheet metal forming by bending under tension (BUT) test, the contact pressure between the pin and the sheet was measured using a film that has the ability to record the applied pressure. The vertical force applied to pin was also measured. The results indicate that the vertical force is more accurate to set the contact pressure that using equations predetermined. It was also observed that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. The friction coefficient was determined for the BUT test through several equations proposed by various authors in order to check if there is much variation between the results. It was observed that the friction coefficient showed little variation for each equation, and each one can be used. The material used was the commercially pure aluminum, alloy Al1100.
文摘The aim of this paper is to present finite element model of a filament-wound composite tube subjected to three-point bending and bending in accordance with standard EN?15807:2011?(railway applications-pneumatic half couplings) along with its experimental verification. In the finite element model, composite reinforcement plies have been characterized by linear orthotropic material model, while rubber liners have been described by a two-parameter MooneyRivlin model. Force-displacement curves of three-point bending show fairly good agreement between simulation results and experimental data. Reaction forces of FE simulation and experiment of standard bending test are in good agreement.
文摘In this study, the bending test is used to investigate the glass transition temperature for epoxy reinforced with three types ot fibers, fiberglass, Kevlar and synthetic wool, these materials have a wide used in many application which they are used composite materials. The glass transition temperature can be measured at the point of inflection for "the curve of variation of the deflection and temperature. The results show that, the glass transition temperature is affected by the type of the reinforcement of the composites. On the other hand, the glass transition temperature of the wool composite is higher than the other.
基金financially supported by the National Key Research and Development Program of China(No.2022YFC2905004)the National Natural Science Foundation of China(No.51804017)。
文摘For mines with poor ore bodies and surrounding rocks,the general mining method does not allow the ore to be extracted from underground safely and efficiently.For these mines,the downward layered filling mining technique is undoubtedly the most suitable mining method.The downward filling mining technique may eliminate the troubles relating to poor ore deposit conditions,such as production safety,ore loss rate,and depletion rate.However,in this technique,the safety of the artificial roof of the next stratum is of paramount importance.Cementitious tailings backfilling(CTB)that is not sufficiently cemented and causes collapses could threaten ore production.This paper explores a diamond-shaped composite structure to mimic the stability of a glued false roof in an actual infill mine based on the recently emerged three-dimensional(3D)printing technology.Experimental means such as three-point bending and digital image correlation(DIC)techniques were used to explore the flexural characteristics of 3D construction specimens and CTB combinations with different cement/tailings weight ratios at diverse layer heights.The results show that the 3D structure with a 14-mm ply height and CTB has strong flexural characteristics,with a maximum deflection value of 30.1 mm,while the 3D-printed rhomboid polymer(3D-PRP)structure with a 26-mm ply height is slightly worse in terms of flexural strength characteristics,but it has a higher maximum flexural strength of 2.83 MPa.A combination of 3D structure and CTB has more unique mechanical properties than CTB itself.This research work offers practical knowledge on the artificial roof performance of the downward layered filling mining technique and builds a scientific knowledge base regarding the successful application of CTB material in mines.
基金support from the China University of Petroleum(Beijing)School for Young Talent Startup Fund(No.ZX20190183).
文摘Fracture propagation is affected by multi-metal-veins formed by geological diagenesis in shale during the hydraulic fracturing.However,the influence of multi-metal-veins on fractures propagation remains unclear.To solve the problem,based on the semi-circle bending(SCB)test and the extended finite element(XFEM)theory,the interaction between multi-metal-veins and fractures is investigated.The experimental results reveal that the fractures usually deflect at the upper or lower interfaces between metal veins and rocks(e.g.the specimen S-2),which is different from the propagation behavior of fractures in calcite veins.Meanwhile,the fracture toughness of the specimen S-1 is 24.40%higher than that of the specimen S-2,indicating that the increasing of total thickness of multiple metal veins in-creases the resistance to the fracture vertical propagation.The simulation results show that the increasing of the number,total thickness of veins,the modulus difference between veins and rock,the approach angle and the notch angle all increase the resistance of the fracture passing through metal veins.The maximum deviation distance(Dmax)of the fracture decreases with the number of veins,while thickness combination types of metal veins do not affect Dmax.The reduction of the notch angle leads to the more tortuous fracture propagation path.Finally,we propose a new comprehensive fracture network pattern.Fracture networks are divided into two categories,including orthogonal fracture networks and sub-orthogonal fracture networks,and then divided into six sub-categories further.The research results will provide reference for hydraulic fracturing of shale reservoirs containing multi-metal-veins.
基金Specialized Research Fund for the Doctoral Program ofHigher Education(No20070286009)the Preresearch Project of the National Natural Science Foundation of Southeast University ( NoKJ2009388)
文摘The fracture properties of epoxy asphalt mixtures (EAM) are evaluated based on J-integral and ultimate strength. Totally 60 semi-circular bending (SCB)specimens cored from superpave gyratory compactor (SGC)with three groups of notch depths are tested at the temperature of - 10 and 20 ℃. The experimental results reveal good repeatability in EAM characterization. The tensile strength ratio of SCB to the indirect tensile test (IDT) is at a range of 1.4 to 1.7, and the ultimate strength of EAM is exponentially dependent on the notch depths. At the test temperatures, the critical J-integral value of EAM is much higher than that of hot mix asphalt( HMA) with thermoplastic asphalt binder. The response mode of EAM changes from ductile mode to brittle mode and the fracture energy increases 30% when temperature decreases from 20 to - 10℃, while its critical J-integral value decreases only 15%. It is concluded that EAM has better fracture resistance than thermo-plastic HMA; more fracture energy is needed to initiate cracks in EAM at low temperature, and the cracks propagate more rapidly than at room temperature.
基金the Guangdong Major Project of Basic and Applied Basic Research(No.2019B030302011)National Natural Science Foundation of China(Nos.52005523,U2032143,11902370)+3 种基金International Sci&Tech Cooperation Program of GuangDong Province(No.2019A050510022)Key Research Project of GuangDong Province(Nos.2019B010943001 and 2017B020235001)China Postdoctoral Science Foundation(Nos.2019M653173 and 2019TQ0374)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.2021qntd12).
文摘High-temperature chromium(Cr)-zirconium(Zr)interdiffusion commonly occurs in Cr-coated zircaloys applied for enhanced accident-tolerant fuel(ATF)claddings.Such interdiffusion changes the interfacial microstructure and thus the fracture mechanism of the coating under external loading.In this study,the interdiffusion behavior in a magnetron sputtered Cr coating deposited on a Zr-4 alloy was studied in a vacuum environment at 1160C.In addition,the effect of interdiffusion on the microcracking behavior of the Cr coating was determined by in situ three-point bending tests.The experimental results show that the interdiffusion behavior resulted in the formation of a ZrCr2 layer,accompanied by the consumption of Cr coating and interfacial roughening.The growth of the diffusion layer followed a nearly parabolic law with respect to annealing time,and the residual stress of the annealed coating decreased with increasing annealing time.Under external loading,a large number of cracks were generated in the brittle interlayer,and some interfacial cracks were formed and grew at the ZrCr2/Zr-4 interface.Despite the remarkable microcracks in the ZrCr2 layer,the vacuum-annealed Cr coating has significantly fewer cracks than the original coating,mainly because of the recrystallization of the coating during annealing.
基金The authors would like to acknowledge the financial support from the Agencia Estatal de Investigacion(Project RTI2018-096391-B-C31)Comunidad de Madrid(Project ADITIMAT-CM S2018/NMT-4411)the FPU grant(15/03606)from the Ministerio de Educacion,Cultura y Deporte,Spain.
文摘The as-cast Mg-3Zn-0.4Ca alloy shows a great potential to be used in biomedical applications due to its composition,mechanical properties and biodegradability.Zn and Ca appear naturally in the organism accomplishing vital functions.The alloy consists of an a-Mg matrix and a eutectic composed of a-Mg4-Ca2Mg6Zn3.The eutectic product enhances the mechanical properties of the studied alloy,causing strengthening and providing superior hardness values.In this alloy,cracks initiate at the intermetallic compounds and progress through the matrix because of the open network formed by the eutectics.Attending to the corrosion results,the eutectic product presents a noble potential compared to the a-Mg phase.For this reason,the corrosion progresses preferentially through the matrix,avoiding the(α-Mg+Ca2Mg6Zri3)eutectic product,when the alloy is in direct contact to Hank's solution.
文摘Six kinds of micro bridge-beam specimens with different sizes are fabricated using photolithography technology for bending test. Beam specimens with trapezoidal section could be representatives of those with rectangle and square section, which are usually applied in MEMS. Nano indentation method used in bending test can be applied to both elastic and plastic materials. Also, some mechanical properties parameters such as the modulus of elasticity, hardness and the bending strength are obtained. The average modulus of elasticity of SCS is 170.295 0±2.485 0 GPa, showing no size effects, but the bending strength ranges from 3.24 GPa to 10.15 GPa, displaying strong size effects, and the average hardness is 9.496 7±1.753 3 GPa,in which no obvious size effects are observed.
文摘Fine and coarse aggregates play an important role in the fracture of concrete. However, quantitative information available on the effect of the coarse aggregate size on the fracture properties of concrete is still limited. In the present paper, the effect of coarse aggregate size (single grade of 5~10, 10~16, 16~20 and 20~25 mm) on stress-crack opening (σ-w) relation in normal and high strength concretes (compressive strength of 40 and 80 MPa, respectively) was studied. The investigation was based on three-point bending tests implemented by fictitious crack analysis. The result shows that coarse aggregate size and cement matrix strength significantly influence the shape of σ-w curve. For a given total aggregate content, in normal strength concrete, smaller size of aggregate leads to a high tensile strength and a sharp stress drop after the peak stress. The smaller the coarse aggregate, the steeper the σ-w curve. By contrast, in high strength concrete, the effect of aggregate size on σ-w relation almost vanishes. A similar σ-w relation is obtained for the concrete except for the case of 20~25 mm coarse aggregate size. The stress drop after the peak stress is more significant for high strength concrete than that for normal strength concrete. Meanwhile, the smaller the coarse aggregate size, the higher the flexural strength. Fracture energy and characteristic length increase with increasing coarse aggregate size in both normal and high strength concretes.
文摘The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (PMMA) denture-base resins. Specimens (n= 10) were fabricated from a conventional heat-activated QC-20 (Qc-) and a microwave heat-activated Acron MC (Ac-) PMMA resins. Powder/ liquid ratio followed the manufacturer's instructions for the control groups (Qc-c and Ac-c) and for the copolymer groups, the resins were prepared with 5% (-5), 10% (- 10), 15% (- 15) and 20% (-20) acrylamide contents, according to the molecular weight ratio, respectively. The flexural strength and flexural modulus were measured by a three-point bending test. The data obtained were statistically analyzed by Kruskal-Wallis test (a=O.05) to determine significant differences between the groups, The chemical structures of the resins were characterized by the nuclear magnetic resonance spectroscopy. Thermal stabilities were determined by thermogravimetric analysis (TGA) with a heating rate of 10 ~C.min-1 from 35 ~C to 600 ~C. Control groups from both acrylic resins showed the lowest flexural strength values. Qc-15 showed significant increase in the flexural strength when compared to Qc-c (P〈O.01). Ac-10 and Ac-15 showed significance when compared to Ac-c (P〈O.01). Acrylamide incorporation increased the elastic modulus in Qc-10, Qc-15 and Qc-20 when compared to Qc-c (P〈0.01). Also significant increase was observed in Ac-10, Ac-15 and Ac-20 copolymer groups when compared to Ac-c (P〈0.01). According to the 1H-nuclear magnetic resonance (NMR) results, acrylamide copolymerization was confirmed in the experimental groups. TGA results showed that the thermal stability of PMMA is increased by the insertion of AAm.
基金supported by the National Natural Science Foundation of China (Grants 91216108, 11432014, 11672301, 11372318, and 11502273)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDB22040501)
文摘For decades, nacre has inspired researchers because of its sophisticated hierarchical structure and remarkable mechanical properties, especially its extreme fracture toughness compared with that of its predominant constituent,CaCO3, in the form of aragonite. Crack deflection has been extensively reported and regarded as the principal toughening mechanism for nacre. In this paper, our attention is focused on crack evolution in nacre under a quasi-static state. We use the notched three-point bending test of dehydrated nacre in situ in a scanning electron microscope(SEM) to monitor the evolution of damage mechanisms ahead of the crack tip. The observations show that the crack deflection actually occurs by constrained microcracking. On the basis of our findings, a crack propagation model is proposed, which will contribute to uncovering the underlying mechanisms of nacre’s fracture toughness and its damage evolution. These investigations would be of great value to the design and synthesis of novel biomimetic materials.
文摘Stress relaxation behavior of two turbine bolt steels was evaluated by the manual-controlled tensile stress relaxation test (TSRT) at high temperature. First, feasibility and the procedure of the manual-controlled tensile stress relaxation test (TSRT) is discussed and carried out on a general creep testing machine. And then, the experimental results from such type of test were compared to the existing data provided by certain Laboratory U.K. Overall good agreement between the results of manual-controlled TSRT method and the existing data provides confidence in the use of the proposed method in practice. Finally, the experimental results of turbine bolt steels from TSRT were compared with that of bending test. It is observed that great difference exists between the results from two different type stress relaxation tests. It is therefore suggested that the results from TSRT method be adopted in turbine bolt design in engineering.
基金The project supported by an RGC grant from the Research Grant Council of the Hong Kong Special Administrative RegionChina
文摘The paper gives an overview on experimental observations of the failure behavior of electrically insulating and conducting cracks in piezoelectric ce- ramics.The experiments include the indentation fracture test,the bending test on smooth samples,and the fracture test on pre-notched(or pre-cracked)compact ten- sion samples.For electrically insulating cracks,the experimental results show a com- plicated fracture behavior under electrical and mechanical loading.Fracture data are much scattered when a static electric field is applied.A statistically based frac- ture criterion is required.For electrically conducting cracks,the experimental results demonstrate that static electric fields can fracture poled and depoled lead zirconate titanate ceramics and that the concepts of fracture mechanics can be used to mea- sure the electrical fracture toughness.Furthermore,the electrical fracture toughness is much higher than the mechanical fracture toughness.The highly electrical fracture toughness arises from the greater energy dissipation around the conductive crack tip under purely electric loading,which is impossible under mechanical loading in the brittle ceramics.