In this paper,the Fourier collocation method for solving the generalized Benjamin-Ono equation with periodic boundary conditions is analyzed.Stability of the semi-discrete scheme is proved and error estimate in H^(1/2...In this paper,the Fourier collocation method for solving the generalized Benjamin-Ono equation with periodic boundary conditions is analyzed.Stability of the semi-discrete scheme is proved and error estimate in H^(1/2)-norm is obtained.展开更多
We show for the Benjamin-Ono equation an existence uniqeness theorem in Sobolev spaces of arbitrary fractional order s greater-than-or-equal-to 2, provided the initial data is given in the same space.
The Benjamin-ono (BO) equation is an important nonlinear wave model which can describe the deep oceanic internal wave propagation. In this paper, the multi-algebraic solitary wave solutions for the internal wave BO eq...The Benjamin-ono (BO) equation is an important nonlinear wave model which can describe the deep oceanic internal wave propagation. In this paper, the multi-algebraic solitary wave solutions for the internal wave BO equation including the linear velocity term in matrix form are given by the bilinear form. Based on the analytic solutions of the BO equation obtained in this paper and considering the hydrological parameters, the propagation of one-solitary wave and different kinds of interaction for the two-solitary waves are discussed and illustrated.展开更多
This paper discusses the existence and uniqueness of the generalized solution in the sense of Colombeau to the Benjamin-Ono (B-O) equation and the relationship between the new generalized solution and the classical so...This paper discusses the existence and uniqueness of the generalized solution in the sense of Colombeau to the Benjamin-Ono (B-O) equation and the relationship between the new generalized solution and the classical solution.展开更多
In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondl...In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondly,the existence and uniqueness of local solutions are proved by the Sobolev embedding theorem and the comparison principle.Finally,according to the relevant research data and contents of red fire ants,the diffusion area and nest number of red fire ants were simulated without external disturbance.This paper mainly simulates the early diffusion process of red fire ants.In the early diffusion stage,red fire ants grow slowly and then spread over a large area after reaching a certain number.展开更多
In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belon...In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system.展开更多
Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay di...Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.展开更多
The Cauchy problem of the generalized Korteweg-de Vries-Benjamin-Ono equation is considered, and low regularity and limit behavior of the solutions are obtained. For k = 1, local well- posedness is obtained for data i...The Cauchy problem of the generalized Korteweg-de Vries-Benjamin-Ono equation is considered, and low regularity and limit behavior of the solutions are obtained. For k = 1, local well- posedness is obtained for data in H^s(R)(s 〉 -3/4). For k = 2, local result for data in H^S(R)(s 〉1/4) is obtained. For k = 3, local result for data in H^S(R)(s 〉 -1/6) is obtained. Moreover, the solutions of generalized Korteweg-de Vries-Benjamin-Ono equation converge to the solutions of KdV equation if the term of Benjamin-Ono equation tends to zero.展开更多
The current paper is devoted to the Cauchy problem for the stochastic generalized Benjamin-Ono equation.By establishing the bilinear and trilinear estimates in some Bourgain spaces,we prove that the Cauchy problem for...The current paper is devoted to the Cauchy problem for the stochastic generalized Benjamin-Ono equation.By establishing the bilinear and trilinear estimates in some Bourgain spaces,we prove that the Cauchy problem for the stochastic generalized Benjamin-Ono equation is locally well-posed for the initial data u0(x,w)∈L^(2)(Ω;H^(s)(R))which is F0-measurable with s≥1/2-α/4 andΦ∈L20,s.In particular,whenα=1,we prove that it is globally well-posed for the initial data u0(x,w)∈L2(Ω;H1(R))which is F0-measurable andΦ∈L20,1.The key ingredients that we use in this paper are trilinear estimates,the Ito formula and the Burkholder-Davis-Gundy(BDG)inequality as well as the stopping time technique.展开更多
This paper deals with the nonlinear problems of the two-layer shallow water wave modelin the atmosphere by the multiple scale method and points out that a nonlinear Benjamin-Ono equation may be obtained if the meridio...This paper deals with the nonlinear problems of the two-layer shallow water wave modelin the atmosphere by the multiple scale method and points out that a nonlinear Benjamin-Ono equation may be obtained if the meridional disturbance wind is weak. Furthermore, thealgebraic solitary waves and nonlinear periodic waves are also calculated and the breakup ofan algebraic solitary wave at the initial time into two is discussed. It is found that the waveform steepens in this process, which is similar to the triggering process of squall lines inthe atmosphere. On the other hand, we also point out that when the meridional disturbancewind is strong, we may obtain a modified Benjamin-Ono equation, i. e. the Benjamin-Ono-KDV equation.展开更多
This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽...This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.展开更多
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based...Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.展开更多
In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled b...In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.展开更多
By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by si...By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.展开更多
In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied tho...In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.展开更多
This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectio...This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.展开更多
This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Bouss...This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).展开更多
In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitatio...In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg.展开更多
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e...In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.展开更多
基金supported by NSF of China(60874039)Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50101)
文摘In this paper,the Fourier collocation method for solving the generalized Benjamin-Ono equation with periodic boundary conditions is analyzed.Stability of the semi-discrete scheme is proved and error estimate in H^(1/2)-norm is obtained.
文摘We show for the Benjamin-Ono equation an existence uniqeness theorem in Sobolev spaces of arbitrary fractional order s greater-than-or-equal-to 2, provided the initial data is given in the same space.
文摘The Benjamin-ono (BO) equation is an important nonlinear wave model which can describe the deep oceanic internal wave propagation. In this paper, the multi-algebraic solitary wave solutions for the internal wave BO equation including the linear velocity term in matrix form are given by the bilinear form. Based on the analytic solutions of the BO equation obtained in this paper and considering the hydrological parameters, the propagation of one-solitary wave and different kinds of interaction for the two-solitary waves are discussed and illustrated.
基金Project supported by the National Natural Science Foundation ofChina (No. 60103015) and SRF for ROCS+2 种基金 SEM China
文摘This paper discusses the existence and uniqueness of the generalized solution in the sense of Colombeau to the Benjamin-Ono (B-O) equation and the relationship between the new generalized solution and the classical solution.
基金Supported by National Natural Science Foundation of China(12101482)Postdoctoral Science Foundation of China(2022M722604)+2 种基金General Project of Science and Technology of Shaanxi Province(2023-YBSF-372)The Natural Science Foundation of Shaan Xi Province(2023-JCQN-0016)Shannxi Mathmatical Basic Science Research Project(23JSQ042)。
文摘In order to better describe the phenomenon of biological invasion,this paper introduces a free boundary model of biological invasion.Firstly,the right free boundary is added to the equation with logistic terms.Secondly,the existence and uniqueness of local solutions are proved by the Sobolev embedding theorem and the comparison principle.Finally,according to the relevant research data and contents of red fire ants,the diffusion area and nest number of red fire ants were simulated without external disturbance.This paper mainly simulates the early diffusion process of red fire ants.In the early diffusion stage,red fire ants grow slowly and then spread over a large area after reaching a certain number.
文摘In this paper,we delve into a generalized higher order Camassa-Holm type equation,(or,an ghmCH equation for short).We establish local well-posedness for this equation under the condition that the initial data uo belongs to the Sobolev space H'(R)for some s>2.In addition,we obtain the weak formulation of this equation and prove the existence of both single peakon solution and a multi-peakon dynamic system.
文摘Deep neural networks(DNNs)are effective in solving both forward and inverse problems for nonlinear partial differential equations(PDEs).However,conventional DNNs are not effective in handling problems such as delay differential equations(DDEs)and delay integrodifferential equations(DIDEs)with constant delays,primarily due to their low regularity at delayinduced breaking points.In this paper,a DNN method that combines multi-task learning(MTL)which is proposed to solve both the forward and inverse problems of DIDEs.The core idea of this approach is to divide the original equation into multiple tasks based on the delay,using auxiliary outputs to represent the integral terms,followed by the use of MTL to seamlessly incorporate the properties at the breaking points into the loss function.Furthermore,given the increased training dificulty associated with multiple tasks and outputs,we employ a sequential training scheme to reduce training complexity and provide reference solutions for subsequent tasks.This approach significantly enhances the approximation accuracy of solving DIDEs with DNNs,as demonstrated by comparisons with traditional DNN methods.We validate the effectiveness of this method through several numerical experiments,test various parameter sharing structures in MTL and compare the testing results of these structures.Finally,this method is implemented to solve the inverse problem of nonlinear DIDE and the results show that the unknown parameters of DIDE can be discovered with sparse or noisy data.
文摘The Cauchy problem of the generalized Korteweg-de Vries-Benjamin-Ono equation is considered, and low regularity and limit behavior of the solutions are obtained. For k = 1, local well- posedness is obtained for data in H^s(R)(s 〉 -3/4). For k = 2, local result for data in H^S(R)(s 〉1/4) is obtained. For k = 3, local result for data in H^S(R)(s 〉 -1/6) is obtained. Moreover, the solutions of generalized Korteweg-de Vries-Benjamin-Ono equation converge to the solutions of KdV equation if the term of Benjamin-Ono equation tends to zero.
基金supported by Young Core Teachers Program of Henan Province(Grant No.5201019430009)supported by National Natural Science Foundation of China(Grant No.11771449)。
文摘The current paper is devoted to the Cauchy problem for the stochastic generalized Benjamin-Ono equation.By establishing the bilinear and trilinear estimates in some Bourgain spaces,we prove that the Cauchy problem for the stochastic generalized Benjamin-Ono equation is locally well-posed for the initial data u0(x,w)∈L^(2)(Ω;H^(s)(R))which is F0-measurable with s≥1/2-α/4 andΦ∈L20,s.In particular,whenα=1,we prove that it is globally well-posed for the initial data u0(x,w)∈L2(Ω;H1(R))which is F0-measurable andΦ∈L20,1.The key ingredients that we use in this paper are trilinear estimates,the Ito formula and the Burkholder-Davis-Gundy(BDG)inequality as well as the stopping time technique.
文摘This paper deals with the nonlinear problems of the two-layer shallow water wave modelin the atmosphere by the multiple scale method and points out that a nonlinear Benjamin-Ono equation may be obtained if the meridional disturbance wind is weak. Furthermore, thealgebraic solitary waves and nonlinear periodic waves are also calculated and the breakup ofan algebraic solitary wave at the initial time into two is discussed. It is found that the waveform steepens in this process, which is similar to the triggering process of squall lines inthe atmosphere. On the other hand, we also point out that when the meridional disturbancewind is strong, we may obtain a modified Benjamin-Ono equation, i. e. the Benjamin-Ono-KDV equation.
基金supported by the National Natural Science Foundation of China(12271296,12271195).
文摘This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11931017 and 12071447)。
文摘Three modified sine-Hilbert(sH)-type equations, i.e., the modified sH equation, the modified damped sH equation, and the modified nonlinear dissipative system, are proposed, and their bilinear forms are provided.Based on these bilinear equations, some exact solutions to the three modified equations are derived.
文摘In this study, the Bernstein collocation method has been expanded to Stancu collocation method for numerical solution of the charged particle motion for certain configurations of oscillating magnetic fields modelled by a class of linear integro-differential equations. As the method has been improved, the Stancu polynomials that are generalization of the Bernstein polynomials have been used. The method has been tested on a physical problem how the method can be applied. Moreover, numerical results of the method have been compared with the numerical results of the other methods to indicate the efficiency of the method.
基金supported by the National Natural Science Foundation of China(Grant Nos.12175111 and 12235007)the K.C.Wong Magna Fund in Ningbo University。
文摘By the modifying loss function MSE and training area of physics-informed neural networks(PINNs),we propose a neural networks model,namely prior-information PINNs(PIPINNs).We demonstrate the advantages of PIPINNs by simulating Ai-and Bi-soliton solutions of the cylindrical Korteweg-de Vries(cKdV)equation.
文摘In this paper, the matrix Riccati equation is considered. There is no general way for solving the matrix Riccati equation despite the many fields to which it applies. While scalar Riccati equation has been studied thoroughly, matrix Riccati equation of which scalar Riccati equations is a particular case, is much less investigated. This article proposes a change of variable that allows to find explicit solution of the Matrix Riccati equation. We then apply this solution to Optimal Control.
文摘This article describes the solution procedure of the fractional Pade-Ⅱ equation and generalized Zakharov equation(GSEs)using the sine-cosine method.Pade-Ⅱ is an important nonlinear wave equation modeling unidirectional propagation of long-wave in dispersive media and GSEs are used to model the interaction between one-dimensional high,and low-frequency waves.Classes of trigonometric and hyperbolic function solutions in fractional calculus are discussed.Graphical simulations of the numerical solutions are flaunted by MATLAB.
基金supported by National Natural Science Foundation of China(12071391,12231016)the Guangdong Basic and Applied Basic Research Foundation(2022A1515010860)。
文摘This paper is devoted to understanding the stability of perturbations around the hydrostatic equilibrium of the Boussinesq system in order to gain insight into certain atmospheric and oceanographic phenomena.The Boussinesq system focused on here is anisotropic,and involves only horizontal dissipation and thermal damping.In the 2D case R^(2),due to the lack of vertical dissipation,the stability and large-time behavior problems have remained open in a Sobolev setting.For the spatial domain T×R,this paper solves the stability problem and gives the precise large-time behavior of the perturbation.By decomposing the velocity u and temperatureθinto the horizontal average(ū,θ)and the corresponding oscillation(ū,θ),we can derive the global stability in H~2 and the exponential decay of(ū,θ)to zero in H^(1).Moreover,we also obtain that(ū_(2),θ)decays exponentially to zero in H^(1),and thatū_(1)decays exponentially toū_(1)(∞)in H^(1)as well;this reflects a strongly stratified phenomenon of buoyancy-driven fluids.In addition,we establish the global stability in H^(3)for the 3D case R^(3).
文摘In the articles “Newtons Law of Universal Gravitation Explained by the Theory of Informatons” and “The Gravitational Interaction between Moving Mass Particles Explained by the Theory of Informatons” the gravitational interaction has been explained by the hypothesis that information carried by informatons is the substance of gravitational fields, i.e. the medium that the interaction in question makes possible. From the idea that “information carried by informatons” is its substance, it has been deduced that—on the macroscopic level—a gravitational field manifests itself as a dual entity, always having a field- and an induction component (Egand Bg) simultaneously created by their common sources. In this article we will mathematically deduce the Maxwell-Heaviside equations from the kinematics of the informatons. These relations describe on the macroscopic level how a gravitational field (Eg, Bg) is generated by whether or not moving masses and how spatial and temporal changes of Egand Bgare related. We show that there is no causal link between Egand Bg.
基金supported by the NSFC(12101012)the PhD Scientific Research Start-up Foundation of Anhui Normal University.Zeng’s research was supported by the NSFC(11961160716,11871054,12131017).
文摘In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.