Self‐assembled mesoporous polyoxometalate‐based ionic hybrid catalyst,[PxyDim]2.5PMoV2,was prepared by combining p‐xylene‐tethered diimidazole ionic liquid[PxyDim]Cl2with Keggin‐structured V‐substituted polyoxom...Self‐assembled mesoporous polyoxometalate‐based ionic hybrid catalyst,[PxyDim]2.5PMoV2,was prepared by combining p‐xylene‐tethered diimidazole ionic liquid[PxyDim]Cl2with Keggin‐structured V‐substituted polyoxometalate H5PMo10V2O40.The obtained hybrid was shown to be a mesostructured and hydrophobic material with good thermal stability.In the H2O2‐based hydroxylation of benzene to phenol,the hybrid showed extraordinary catalytic activity and rate,and quite stable reusability.The unique hydrophobic properties and mesoporous structure of the hybrid were responsible for its excellent catalytic performance.展开更多
Direct hydroxylation of benzene catalyzed by vanadium-con- taining heteropoly compounds with Keggin or Dawson structure has been investigated.The effects of several factors upon the hydroxylation reaction have also be...Direct hydroxylation of benzene catalyzed by vanadium-con- taining heteropoly compounds with Keggin or Dawson structure has been investigated.The effects of several factors upon the hydroxylation reaction have also been examined.It is indicated that the highest yield of phenol reached 76%(based on H_2O_(?))with 99.4~100% selectivity.展开更多
A series of graphitic carbon nitride supported vanadium catalysts(xV/g-C3N4) with different vanadium contents(x/%) were prepared by impregnation.XRD,FT-IR,TEM,TG-DTG,nitrogen adsorption and XPS characterizations w...A series of graphitic carbon nitride supported vanadium catalysts(xV/g-C3N4) with different vanadium contents(x/%) were prepared by impregnation.XRD,FT-IR,TEM,TG-DTG,nitrogen adsorption and XPS characterizations were conducted which revealed a strong interaction between the vanadium species and g-C3N4 support.8V/g-C3N4 exhibited the highest activity and showed stable recyclability in the benzene hydroxylation reaction with a benzene conversion of 24.6%and phenol selectivity of 99.2%under the optimized conditions.The excellent catalytic performance of xV/g-C3N4 was due to the integration of vanadium species with high catalytic activity and the g-C3N4support in their interaction with the benzene substrate.展开更多
A Cr/SBA-16 catalyst was prepared using Cr(NO3)3 as a precursor and mesoporous silica SBA-16 as a support via a simple impregnation method. The catalyst was characterized using wide-angle X-ray diffraction (XRD), ...A Cr/SBA-16 catalyst was prepared using Cr(NO3)3 as a precursor and mesoporous silica SBA-16 as a support via a simple impregnation method. The catalyst was characterized using wide-angle X-ray diffraction (XRD), low-angle XRD, N2 adsorption-desorption, transmission electron microscopy, and ultraviolet-visible spectroscopy. The catalyst activity was investigated in the direct bydroxylation of benzene to phenol using H2O2 as the oxidant. Various operating variables, namely reaction temperature, reaction time, amount of H2O2, and catalyst dosage, were optimized using central composite design combined with response surface methodology (RSM). The results showed that the correla- tion between the independent parameters and phenol yield was represented by a second-order polynomial model. The high correlation coefficient (R2), i.e., 0.985, showed that the data predicted using RSM were in good agreement with the experimental results. The optimization results also showed that high selectivity for phenol was achieved at the optimized values of the operating variables: reaction temperature 324 K, reaction time 8 h, H2O2 content 3.28 mL, and catalyst dosage 0.09 g. This study showed that RSM was a reliable method for optimizing process variables for benzene hydroxylation to phenol.展开更多
Fe3O4/CMK-3 was prepared by impregnation and used as a catalyst for the direct hydroxylation of benzene to phenol with hydro-gen peroxide. The iron species in the prepared catalyst was Fe3O4 because of the partial red...Fe3O4/CMK-3 was prepared by impregnation and used as a catalyst for the direct hydroxylation of benzene to phenol with hydro-gen peroxide. The iron species in the prepared catalyst was Fe3O4 because of the partial reduction of iron(III) to iron(II) on the surface of CMK-3. The high catalytic activity of the catalyst arises from the formation of Fe3O4 on the surface of CMK-3 and the high selectivity for phenol is attributed to the consumption of excess hydroxyl radicals by CMK-3. The effect of temperature,reaction time,volume of H2O2,and amount of catalyst on the catalytic performance of the prepared catalyst were investigated. Under optimized conditions,the catalyst showed excellent catalytic performance for the hydroxylation of benzene to phenol and 18% benzene conversion was achieved with 92% selectivity for phenol and with a TOF value of 8.7 h-1. The stability of catalyst was investigated by determining its activity after the fourth run and it was found to have decreased to 80% of the fresh catalyst's activity.展开更多
Cu-incorporated ordered hexagonal mesoporous silicates (Cu-MCM-41) with spheres-within-a-sphere hollow structure have been synthesized using thermoreversible polymer hydrogel methylcellulose (MC) and cationic surf...Cu-incorporated ordered hexagonal mesoporous silicates (Cu-MCM-41) with spheres-within-a-sphere hollow structure have been synthesized using thermoreversible polymer hydrogel methylcellulose (MC) and cationic surfactant as co-templates, which have been characterized by scanning electron micrograph (SEM), X-ray diffraction (XRD), transmission electron micrograph (TEM), and N2 adsorption-desorption isotherms. The obtained results indicate that the morphology of Cu-incorporated MCM-41 materials is "spheres-within-a-sphere" hollow structure, which is very similar to that of the alveolus. In benzene hydroxylation with H2O2, the hollow spheres show much higher catalytic activity than particles of Cu-MCM-41.展开更多
基金supported by the National Natural Science Foundation of China (21506118,21476132,51574160)Shandong Province Founda-tion for Outstanding Young Scientist (BS2014CL030)~~
文摘Self‐assembled mesoporous polyoxometalate‐based ionic hybrid catalyst,[PxyDim]2.5PMoV2,was prepared by combining p‐xylene‐tethered diimidazole ionic liquid[PxyDim]Cl2with Keggin‐structured V‐substituted polyoxometalate H5PMo10V2O40.The obtained hybrid was shown to be a mesostructured and hydrophobic material with good thermal stability.In the H2O2‐based hydroxylation of benzene to phenol,the hybrid showed extraordinary catalytic activity and rate,and quite stable reusability.The unique hydrophobic properties and mesoporous structure of the hybrid were responsible for its excellent catalytic performance.
文摘Direct hydroxylation of benzene catalyzed by vanadium-con- taining heteropoly compounds with Keggin or Dawson structure has been investigated.The effects of several factors upon the hydroxylation reaction have also been examined.It is indicated that the highest yield of phenol reached 76%(based on H_2O_(?))with 99.4~100% selectivity.
基金supported by the National Natural Science Foundation of China(21371035,21473036)SINOPEC(X514005)
文摘A series of graphitic carbon nitride supported vanadium catalysts(xV/g-C3N4) with different vanadium contents(x/%) were prepared by impregnation.XRD,FT-IR,TEM,TG-DTG,nitrogen adsorption and XPS characterizations were conducted which revealed a strong interaction between the vanadium species and g-C3N4 support.8V/g-C3N4 exhibited the highest activity and showed stable recyclability in the benzene hydroxylation reaction with a benzene conversion of 24.6%and phenol selectivity of 99.2%under the optimized conditions.The excellent catalytic performance of xV/g-C3N4 was due to the integration of vanadium species with high catalytic activity and the g-C3N4support in their interaction with the benzene substrate.
基金the University of Tehran for financial support of this work
文摘A Cr/SBA-16 catalyst was prepared using Cr(NO3)3 as a precursor and mesoporous silica SBA-16 as a support via a simple impregnation method. The catalyst was characterized using wide-angle X-ray diffraction (XRD), low-angle XRD, N2 adsorption-desorption, transmission electron microscopy, and ultraviolet-visible spectroscopy. The catalyst activity was investigated in the direct bydroxylation of benzene to phenol using H2O2 as the oxidant. Various operating variables, namely reaction temperature, reaction time, amount of H2O2, and catalyst dosage, were optimized using central composite design combined with response surface methodology (RSM). The results showed that the correla- tion between the independent parameters and phenol yield was represented by a second-order polynomial model. The high correlation coefficient (R2), i.e., 0.985, showed that the data predicted using RSM were in good agreement with the experimental results. The optimization results also showed that high selectivity for phenol was achieved at the optimized values of the operating variables: reaction temperature 324 K, reaction time 8 h, H2O2 content 3.28 mL, and catalyst dosage 0.09 g. This study showed that RSM was a reliable method for optimizing process variables for benzene hydroxylation to phenol.
文摘Fe3O4/CMK-3 was prepared by impregnation and used as a catalyst for the direct hydroxylation of benzene to phenol with hydro-gen peroxide. The iron species in the prepared catalyst was Fe3O4 because of the partial reduction of iron(III) to iron(II) on the surface of CMK-3. The high catalytic activity of the catalyst arises from the formation of Fe3O4 on the surface of CMK-3 and the high selectivity for phenol is attributed to the consumption of excess hydroxyl radicals by CMK-3. The effect of temperature,reaction time,volume of H2O2,and amount of catalyst on the catalytic performance of the prepared catalyst were investigated. Under optimized conditions,the catalyst showed excellent catalytic performance for the hydroxylation of benzene to phenol and 18% benzene conversion was achieved with 92% selectivity for phenol and with a TOF value of 8.7 h-1. The stability of catalyst was investigated by determining its activity after the fourth run and it was found to have decreased to 80% of the fresh catalyst's activity.
基金Project supported by the National Natural Science Foundation of China, the Major State Basic Research Development Program of China (Nos. 2004CB217804 and 2003CB615802), and Ministry of Education, China.
文摘Cu-incorporated ordered hexagonal mesoporous silicates (Cu-MCM-41) with spheres-within-a-sphere hollow structure have been synthesized using thermoreversible polymer hydrogel methylcellulose (MC) and cationic surfactant as co-templates, which have been characterized by scanning electron micrograph (SEM), X-ray diffraction (XRD), transmission electron micrograph (TEM), and N2 adsorption-desorption isotherms. The obtained results indicate that the morphology of Cu-incorporated MCM-41 materials is "spheres-within-a-sphere" hollow structure, which is very similar to that of the alveolus. In benzene hydroxylation with H2O2, the hollow spheres show much higher catalytic activity than particles of Cu-MCM-41.