In this paper,the expressions of two classes of infinite series in terms of finite series involving Bernoulli numbers are obtained.As applications,we derive some special series including Dirichlet beta functionβ(s)wi...In this paper,the expressions of two classes of infinite series in terms of finite series involving Bernoulli numbers are obtained.As applications,we derive some special series including Dirichlet beta functionβ(s)with argument 2n+1 and Dirichlet lambda functionλ(s)with argument 2n.In addition,we solve the problem proposed recently by Zhou(2021).展开更多
Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying...Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented.展开更多
Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) appli...Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.展开更多
This paper gives a new generalization of higher order Daehee and Bernoulli numbers and polynomials. We define the multiparameter higher order Daehee numbers and polynomials of the first and second kind. Moreover, we d...This paper gives a new generalization of higher order Daehee and Bernoulli numbers and polynomials. We define the multiparameter higher order Daehee numbers and polynomials of the first and second kind. Moreover, we derive some new results for these numbers and polynomials. The relations between these numbers and Stirling and Bernoulli numbers are obtained. Furthermore, some interesting special cases of the generalized higher order Daehee and Bernoulli numbers and polynomials are deduced.展开更多
Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursi...Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.展开更多
文摘In this paper,the expressions of two classes of infinite series in terms of finite series involving Bernoulli numbers are obtained.As applications,we derive some special series including Dirichlet beta functionβ(s)with argument 2n+1 and Dirichlet lambda functionλ(s)with argument 2n.In addition,we solve the problem proposed recently by Zhou(2021).
基金Supported by the National Natural Science Foundation of China(51276017)
文摘Based on the differential equation of the deflection curve for the beam,the equation of the deflection curve for the simple beamis obtained by integral. The equation of the deflection curve for the simple beamcarrying the linear load is generalized,and then it is expanded into the corresponding Fourier series.With the obtained summation results of the infinite series,it is found that they are related to Bernoulli num-bers and π. The recurrent formula of Bernoulli numbers is presented. The relationships among the coefficients of the beam,Bernoulli numbers and Euler numbers are found,and the relative mathematical formulas are presented.
文摘Utilizing translation operators we get the powers sums on arithmetic progressions and the Bernoulli polynomials of order munder the form of differential operators acting on monomials. It follows that (d/dn-d/dz) applied on a power sum has a meaning and is exactly equal to the Bernoulli polynomial of the same order. From this new property we get the formula giving powers sums in term of sums of successive derivatives of Bernoulli polynomial multiplied withprimitives of the same order of n. Then by changing the two arguments z,n into Z=z(z-1), λ where λ designed the 1st order power sums and proving that Bernoulli polynomials of odd order vanish for arguments equal to 0, 1/2, 1, we obtain easily the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. These coefficients are found to be derivatives of odd powers sums on integers expressed in Z. By the way we obtain the link between Faulhaber formulae for powers sums on integers and on arithmetic progressions. To complete the work we propose tables for calculating in easiest manners possibly the Bernoulli numbers, the Bernoulli polynomials, the powers sums and the Faulhaber formula for powers sums.
文摘This paper gives a new generalization of higher order Daehee and Bernoulli numbers and polynomials. We define the multiparameter higher order Daehee numbers and polynomials of the first and second kind. Moreover, we derive some new results for these numbers and polynomials. The relations between these numbers and Stirling and Bernoulli numbers are obtained. Furthermore, some interesting special cases of the generalized higher order Daehee and Bernoulli numbers and polynomials are deduced.
文摘Utilizing the translation operator to represent Bernoulli polynomials and power sums as polynomials of Sheffer-type, we obtain concisely almost all their known properties as so as many new ones, especially new recursion relations for calculating Bernoulli polynomials and numbers, new formulae for obtaining power sums of entire and complex numbers. Then by the change of arguments from z into Z = z(z-1) and n into λ which is the 1<sup>st</sup> order power sum we obtain the Faulhaber formula for powers sums in term of polynomials in λ having coefficients depending on Z. Practically we give tables for calculating in easiest possible manners, the Bernoulli numbers, polynomials, the general powers sums.