In this paper,using inhomogeneous Calderon’s reproducing formulas and the space of test functions associated with a para-accretive function,the inhomogeneous Besov and TriebelLizorkin spaces are established.As applic...In this paper,using inhomogeneous Calderon’s reproducing formulas and the space of test functions associated with a para-accretive function,the inhomogeneous Besov and TriebelLizorkin spaces are established.As applications,pointwise multiplier theorems are also obtained.展开更多
The Besov spaces B_p^(α,4)(Γ)and Triebel-Lizorkin spaces F_p^(α,4)(Γ)with high order x∈R on a Lipschitz curve Γ are defind,when 1≤p≤∞,1≤q≤∞.To compare to the classical case.a difference characterization of...The Besov spaces B_p^(α,4)(Γ)and Triebel-Lizorkin spaces F_p^(α,4)(Γ)with high order x∈R on a Lipschitz curve Γ are defind,when 1≤p≤∞,1≤q≤∞.To compare to the classical case.a difference characterization of such spaces in the case|x|<1 is given also.展开更多
Based on the role of the polynomial functions on the homogeneous Besov spaces, on the homogeneous Triebel-Lizorkin spaces and on their realized versions, we study and obtain characterizations of these spaces via diffe...Based on the role of the polynomial functions on the homogeneous Besov spaces, on the homogeneous Triebel-Lizorkin spaces and on their realized versions, we study and obtain characterizations of these spaces via difference operators in a certain sense.展开更多
Using the discrete Calderon type reproducing formula and the PlancherelPolya characterization for the Besov and Triebel-Lizorkin spaces, the T1 theorem for the Besov and Triebel-Lizorkin spaces was proved.
The Herz type Besov and Triebel-Lizorkin spaces with variable exponent are introduced. Then characterizations of these new spaces by maximal functions are given.
This article is devoted to presenting a recapitulative introduction for the theory of Besov-type and Triebel-Lizorkin-type spaces developed in recent years.
Decompositions of non-homogeneous Herz-type Besov and Triebel-Lizorkin spaces by atoms,molecules and wavelets are given.These results generalize the corresponding results for classical Besov and Triebel-Lizorkin spaces.
In this paper, the author establishes the embedding theorems for different metrics of inhomoge-neous Besov and Triebel-Lizorkin spaces on spaces of homogeneous type. As an application, the author obtainssome estimates...In this paper, the author establishes the embedding theorems for different metrics of inhomoge-neous Besov and Triebel-Lizorkin spaces on spaces of homogeneous type. As an application, the author obtainssome estimates for the entropy numbers of the embeddings in the limiting cases between some Besov spacesand some logarithmic Lebesgue spaces.展开更多
In this article,the authors introduce the spaces of Lipschitz type on spaces of homogeneous type in the sense of Coifman and Weiss,and discuss their relations with Besov and Triebel-Lizorkin spaces.As an application,t...In this article,the authors introduce the spaces of Lipschitz type on spaces of homogeneous type in the sense of Coifman and Weiss,and discuss their relations with Besov and Triebel-Lizorkin spaces.As an application,the authors establish the difference characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type.A major novelty of this article is that all results presented in this article get rid of the dependence on the reverse doubling assumption of the considered measure of the underlying spaceχvia using the geometrical property ofχexpressed by its dyadic reference points,dyadic cubes,and the(local)lower bound.Moreover,some results when p≤1 but near to 1 are new even whenχis an RD-space.展开更多
In this paper the classical Besov spaces B^sp.q and Triebel-Lizorkin spaces F^sp.q for s∈R are generalized in an isotropy way with the smoothness weights { |2j|^α→ln }7=0. These generalized Besov spaces and Trie...In this paper the classical Besov spaces B^sp.q and Triebel-Lizorkin spaces F^sp.q for s∈R are generalized in an isotropy way with the smoothness weights { |2j|^α→ln }7=0. These generalized Besov spaces and Triebel-Lizorkin spaces, denoted by B^α→p.q and F^α→p.q for α^→ E Nk and k ∈N, respectively, keep many interesting properties, such as embedding theorems (with scales property for all smoothness weights), lifting properties for all parameters 5, and duality for index 0 〈 p 〈∞ By constructing an example, it is shown that there are infinitely many generalized Besov spaces and generalized Triebel-Lizorkin spaces lying between B^sp.q and ∪t〉s B^tp.q, and between F^sp.q and ∪t〉s F^tp.q, respectively.展开更多
In this paper,the author introduces new Triebel-Lizorkin spaces and Besov spaces associated with different homogeneities and proves that the composition of two Calderón-Zygmund singular integral operators with di...In this paper,the author introduces new Triebel-Lizorkin spaces and Besov spaces associated with different homogeneities and proves that the composition of two Calderón-Zygmund singular integral operators with different homogeneities is bounded on these new Triebel-Lizorkin spaces and Besov spaces.展开更多
In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-...In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-Lizorkin spaces and show that pseudo-differential operators are bounded on these spaces by using pointwise multipliers.展开更多
In this paper, the author establishes a discrete characterization of the Herz-type Triebel-Lizorkin spaces which is used to prove the boundedness of pseudo-differential operators on these function spaces.
In this article, the author introduces a class of non-convolution Calder′on-Zygmund operators whose kernels are certain sums involving the products of Meyer wavelets and their convolutions. The boundedness on Besov s...In this article, the author introduces a class of non-convolution Calder′on-Zygmund operators whose kernels are certain sums involving the products of Meyer wavelets and their convolutions. The boundedness on Besov spaces Bp^0 ,q(1 ≤p,q ≤∞) is also obtained. Moreover, as an application, the author gives a brief proof of the known result that Hrmander condition can ensure the boundedness of convolution-type Calder′on-Zygmund operators on Besov spaces B^p0 ,q(1 ≤p,q ≤∞). However, the proof is quite different from the previous one.展开更多
In this paper, we prove the Triebel-Lizorkin boundedness for the Marcinkiewicz integral with rough kernel. The method we apply here enables us to consider more general operators.
We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the u...We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the upper half-plane by dilatations and eventually by analytic polynomials.展开更多
Let b^→=(b1,…,bm),bi∈∧°βi(R^n),1≤i≤m,0〈βi〈β,0〈β〈1,[B^→,T]f(x)=∫R^n(b1(x)-b1(y))…(bm(x)-bm(y))K(x-y)f(y)dy,where K is a Calder6n-Zygmund kernel. In this paper, we show that ...Let b^→=(b1,…,bm),bi∈∧°βi(R^n),1≤i≤m,0〈βi〈β,0〈β〈1,[B^→,T]f(x)=∫R^n(b1(x)-b1(y))…(bm(x)-bm(y))K(x-y)f(y)dy,where K is a Calder6n-Zygmund kernel. In this paper, we show that [b^→,T] is bounded from L^p(R^n) to Fp^β,∞(R^n),as well as [b^→,1α]form L^p (R^n) to Fp^β,∞(R^n),where 1/q=1/p-α/n.展开更多
In this paper, we reintroduce the weighted multi-parameter Triebel-Lizorkin spaces Fp^a,q(w;R^n1×R^n2) based on the Frazier and Jawerth' method in [11]. This space was firstly introduced in [18]. Then we estab...In this paper, we reintroduce the weighted multi-parameter Triebel-Lizorkin spaces Fp^a,q(w;R^n1×R^n2) based on the Frazier and Jawerth' method in [11]. This space was firstly introduced in [18]. Then we establish its dual space and get that (Fp'q)* = CMOp^-a,q' for 0 ~p≤ 1.展开更多
基金supported by the National Natural Science Foundation of China(11901495)Hunan Provincial NSF Project(2019JJ50573)the Scientific Research Fund of Hunan Provincial Education Department(22B0155)。
文摘In this paper,using inhomogeneous Calderon’s reproducing formulas and the space of test functions associated with a para-accretive function,the inhomogeneous Besov and TriebelLizorkin spaces are established.As applications,pointwise multiplier theorems are also obtained.
基金The author is supported in part by the Foundation of Zhongshan University Advanced Research Centre and NSF of China.
文摘The Besov spaces B_p^(α,4)(Γ)and Triebel-Lizorkin spaces F_p^(α,4)(Γ)with high order x∈R on a Lipschitz curve Γ are defind,when 1≤p≤∞,1≤q≤∞.To compare to the classical case.a difference characterization of such spaces in the case|x|<1 is given also.
文摘Based on the role of the polynomial functions on the homogeneous Besov spaces, on the homogeneous Triebel-Lizorkin spaces and on their realized versions, we study and obtain characterizations of these spaces via difference operators in a certain sense.
基金One of the authors,DENG Donggao,would like to thank the National Natural Science Foundation of China(Grant No.10171111)the Foundation of Zhongshan University Advanced Research Center for their supports.
文摘Using the discrete Calderon type reproducing formula and the PlancherelPolya characterization for the Besov and Triebel-Lizorkin spaces, the T1 theorem for the Besov and Triebel-Lizorkin spaces was proved.
基金This work was supported in part by the National Natural Science Foundation of China (Grant No. 11071064) and the Natural Science Foundation of Hainan Province (No. 111006).
文摘The Herz type Besov and Triebel-Lizorkin spaces with variable exponent are introduced. Then characterizations of these new spaces by maximal functions are given.
基金supported by the National Natural Science Foundation of China(11171027and 11101038)the Specialized Research Fund for the Doctoral Program of Higher Education of China(20120003110003)+1 种基金the Fundamental Research Funds for Central Universities of China(2012LYB26)supported by the Alexander von Humboldt Foundation
文摘This article is devoted to presenting a recapitulative introduction for the theory of Besov-type and Triebel-Lizorkin-type spaces developed in recent years.
基金supported by National Natural Science Foundation of China (Grant Nos.11071064,11361020 and 11226167)the Natural Science Foundation of Hainan Province (Grant Nos.111006 and 113004)
文摘Decompositions of non-homogeneous Herz-type Besov and Triebel-Lizorkin spaces by atoms,molecules and wavelets are given.These results generalize the corresponding results for classical Besov and Triebel-Lizorkin spaces.
基金This work was supported by the Alexander von Humboldt Foundation of Germany and the State Education Department of China.
文摘In this paper, the author establishes the embedding theorems for different metrics of inhomoge-neous Besov and Triebel-Lizorkin spaces on spaces of homogeneous type. As an application, the author obtainssome estimates for the entropy numbers of the embeddings in the limiting cases between some Besov spacesand some logarithmic Lebesgue spaces.
基金partially supported by the National Key Research and Development Program of China(Grant No.2020YFA0712900)the National Natural Science Foundation of China(Grant Nos.11971058,12071197 and 11871100).
文摘In this article,the authors introduce the spaces of Lipschitz type on spaces of homogeneous type in the sense of Coifman and Weiss,and discuss their relations with Besov and Triebel-Lizorkin spaces.As an application,the authors establish the difference characterization of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type.A major novelty of this article is that all results presented in this article get rid of the dependence on the reverse doubling assumption of the considered measure of the underlying spaceχvia using the geometrical property ofχexpressed by its dyadic reference points,dyadic cubes,and the(local)lower bound.Moreover,some results when p≤1 but near to 1 are new even whenχis an RD-space.
基金Supported by NSFC of China under Grant #10571084NSC in Taipei under Grant NSC 94-2115-M-008-009(for the second author)
文摘In this paper the classical Besov spaces B^sp.q and Triebel-Lizorkin spaces F^sp.q for s∈R are generalized in an isotropy way with the smoothness weights { |2j|^α→ln }7=0. These generalized Besov spaces and Triebel-Lizorkin spaces, denoted by B^α→p.q and F^α→p.q for α^→ E Nk and k ∈N, respectively, keep many interesting properties, such as embedding theorems (with scales property for all smoothness weights), lifting properties for all parameters 5, and duality for index 0 〈 p 〈∞ By constructing an example, it is shown that there are infinitely many generalized Besov spaces and generalized Triebel-Lizorkin spaces lying between B^sp.q and ∪t〉s B^tp.q, and between F^sp.q and ∪t〉s F^tp.q, respectively.
文摘In this paper,the author introduces new Triebel-Lizorkin spaces and Besov spaces associated with different homogeneities and proves that the composition of two Calderón-Zygmund singular integral operators with different homogeneities is bounded on these new Triebel-Lizorkin spaces and Besov spaces.
基金Xu Jingshi was partially supported by NSF of Hunan in ChinaYang DaChun was partially supported by NNSF(10271015)and SEDF of China
文摘In this paper, the authors first establish the connections between the Herz-type Triebel-Lizorkin spaces and the well-known Herz-type spaces; the authors then study the pointwise multipliers for the Herz-type Triebel-Lizorkin spaces and show that pseudo-differential operators are bounded on these spaces by using pointwise multipliers.
文摘In this paper, the author establishes a discrete characterization of the Herz-type Triebel-Lizorkin spaces which is used to prove the boundedness of pseudo-differential operators on these function spaces.
基金Sponsored by the NSF of South-Central University for Nationalities(YZZ08004)NNSF of China (10871209)
文摘In this article, the author introduces a class of non-convolution Calder′on-Zygmund operators whose kernels are certain sums involving the products of Meyer wavelets and their convolutions. The boundedness on Besov spaces Bp^0 ,q(1 ≤p,q ≤∞) is also obtained. Moreover, as an application, the author gives a brief proof of the known result that Hrmander condition can ensure the boundedness of convolution-type Calder′on-Zygmund operators on Besov spaces B^p0 ,q(1 ≤p,q ≤∞). However, the proof is quite different from the previous one.
基金Supported by the National Science Foundation of China (Grants 10901043, 10701064, 10871173, and 10931001)Hangdian Foundation (KYS075608076)
文摘In this paper, we prove the Triebel-Lizorkin boundedness for the Marcinkiewicz integral with rough kernel. The method we apply here enables us to consider more general operators.
文摘We study sufficient conditions on radial and non-radial weight functions on the upper half-plane that guarantee norm approximation of functions in weighted Bergman,weighted Dirichlet,and weighted Besov spaces on the upper half-plane by dilatations and eventually by analytic polynomials.
基金Supported by NSF of China (Grant: 10571015)NSF of China (Grant: 10371004)RFDP of China (Grant: 20050027025).
文摘Let b^→=(b1,…,bm),bi∈∧°βi(R^n),1≤i≤m,0〈βi〈β,0〈β〈1,[B^→,T]f(x)=∫R^n(b1(x)-b1(y))…(bm(x)-bm(y))K(x-y)f(y)dy,where K is a Calder6n-Zygmund kernel. In this paper, we show that [b^→,T] is bounded from L^p(R^n) to Fp^β,∞(R^n),as well as [b^→,1α]form L^p (R^n) to Fp^β,∞(R^n),where 1/q=1/p-α/n.
基金Supported by NNSF of China grants(11501308,11271209,11371370)Jiangsu Government Scholarship for Overseas Studies
文摘In this paper, we reintroduce the weighted multi-parameter Triebel-Lizorkin spaces Fp^a,q(w;R^n1×R^n2) based on the Frazier and Jawerth' method in [11]. This space was firstly introduced in [18]. Then we establish its dual space and get that (Fp'q)* = CMOp^-a,q' for 0 ~p≤ 1.