The Birkhoffian mechanics is more general than the Hamilton mechanics,but only some dynamical systems can be realized as a Birkhoffian formulation.This paper proposes a novel Birkhoffian formulation for the classical ...The Birkhoffian mechanics is more general than the Hamilton mechanics,but only some dynamical systems can be realized as a Birkhoffian formulation.This paper proposes a novel Birkhoffian formulation for the classical Bessel equation.Based on the first method of Santilli,the Birkhoffian formulation of Bessel equation is established under the assumption that the Birkhoffian describes the total physical energy of the corresponding conservative systems.Zero and n-th order classical Bessel equations are studied to verify the effectiveness of the proposed formulation.展开更多
This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel ...This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions.展开更多
To the Riemann hypothesis, we investigate first the approximation by step-wise Omega functions Ω(u) with commensurable step lengths u0 concerning their zeros in corresponding Xi functions Ξ(z). They are periodically...To the Riemann hypothesis, we investigate first the approximation by step-wise Omega functions Ω(u) with commensurable step lengths u0 concerning their zeros in corresponding Xi functions Ξ(z). They are periodically on the y-axis with period proportional to inverse step length u0. It is found that they possess additional zeros off the imaginary y-axis and additionally on this axis and vanish in the limiting case u0 → 0 in complex infinity. There remain then only the “genuine” zeros for Xi functions to continuous Omega functions which we call “analytic zeros” and which lie on the imaginary axis. After a short repetition of the Second mean-value (or Bonnet) approach to the problem and the derivation of operational identities for Trigonometric functions we give in Section 8 a proof for the position of these genuine “analytic” zeros on the imaginary axis by construction of a contradiction for the case off the imaginary axis. In Section 10, we show by a few examples that monotonically decreasing of the Omega functions is only a sufficient condition for the mentioned property of the positions of zeros on the imaginary axis but not a necessary one.展开更多
基金Supported by the National Natural Science Foundation of China(11702119,11502071)the Natural Science Foundation of Jiangsu Province(BK20170565)
文摘The Birkhoffian mechanics is more general than the Hamilton mechanics,but only some dynamical systems can be realized as a Birkhoffian formulation.This paper proposes a novel Birkhoffian formulation for the classical Bessel equation.Based on the first method of Santilli,the Birkhoffian formulation of Bessel equation is established under the assumption that the Birkhoffian describes the total physical energy of the corresponding conservative systems.Zero and n-th order classical Bessel equations are studied to verify the effectiveness of the proposed formulation.
文摘This paper is devoted to a new approach—the dynamic response of Soil-Structure System (SSS), the far field of which is discretized by decay or mapped elastodynamic infinite elements, based on scaling modified Bessel shape functions are to be calculated. These elements are appropriate for Soil-Structure Interaction problems, solved in time or frequency domain and can be treated as a new form of the recently proposed elastodynamic infinite elements with united shape functions (EIEUSF) infinite elements. Here the time domain form of the equations of motion is demonstrated and used in the numerical example. In the paper only the formulation of 2D horizontal type infinite elements (HIE) is used, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be added. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite element method is explained in brief. A numerical example shows the computational efficiency and accuracy of the proposed infinite elements, based on scaling Bessel shape functions.
文摘To the Riemann hypothesis, we investigate first the approximation by step-wise Omega functions Ω(u) with commensurable step lengths u0 concerning their zeros in corresponding Xi functions Ξ(z). They are periodically on the y-axis with period proportional to inverse step length u0. It is found that they possess additional zeros off the imaginary y-axis and additionally on this axis and vanish in the limiting case u0 → 0 in complex infinity. There remain then only the “genuine” zeros for Xi functions to continuous Omega functions which we call “analytic zeros” and which lie on the imaginary axis. After a short repetition of the Second mean-value (or Bonnet) approach to the problem and the derivation of operational identities for Trigonometric functions we give in Section 8 a proof for the position of these genuine “analytic” zeros on the imaginary axis by construction of a contradiction for the case off the imaginary axis. In Section 10, we show by a few examples that monotonically decreasing of the Omega functions is only a sufficient condition for the mentioned property of the positions of zeros on the imaginary axis but not a necessary one.