For a subset K of a metric space (X,d) and x ∈ X,Px(x)={y ∈ K : d(x,y) = d(x,K)≡ inf{d(x,k) : k ∈ K}}is called the set of best K-approximant to x. An element go E K is said to be a best simulta- neous ...For a subset K of a metric space (X,d) and x ∈ X,Px(x)={y ∈ K : d(x,y) = d(x,K)≡ inf{d(x,k) : k ∈ K}}is called the set of best K-approximant to x. An element go E K is said to be a best simulta- neous approximation of the pair y1,y2 E ∈ if max{d(y1,go),d(y2,go)}=inf g∈K max {d(y1,g),d(y2,g)}.In this paper, some results on the existence of common fixed points for Banach operator pairs in the framework of convex metric spaces have been proved. For self mappings T and S on K, results are proved on both T- and S- invariant points for a set of best simultaneous approximation. Some results on best K-approximant are also deduced. The results proved generalize and extend some results of I. Beg and M. Abbas^[1], S. Chandok and T.D. Narang^[2], T.D. Narang and S. Chandok^[11], S.A. Sahab, M.S. Khan and S. Sessa^[14], P. Vijayaraju^[20] and P. Vijayaraju and M. Marudai^[21].展开更多
提出了名义最佳建筑体形系数及实际最佳建筑体形系数概念并推导出相应的计算公式;分析了建筑体形系数和层高h关系的一种错误理解;提出了建筑形体系数(Building Corresponding Area Coefficient)概念并推导出实际最佳建筑形体系数的计算...提出了名义最佳建筑体形系数及实际最佳建筑体形系数概念并推导出相应的计算公式;分析了建筑体形系数和层高h关系的一种错误理解;提出了建筑形体系数(Building Corresponding Area Coefficient)概念并推导出实际最佳建筑形体系数的计算公式;通过理论及案例分析,验证了建筑形体系数替代建筑体形系数的必要性。展开更多
文摘For a subset K of a metric space (X,d) and x ∈ X,Px(x)={y ∈ K : d(x,y) = d(x,K)≡ inf{d(x,k) : k ∈ K}}is called the set of best K-approximant to x. An element go E K is said to be a best simulta- neous approximation of the pair y1,y2 E ∈ if max{d(y1,go),d(y2,go)}=inf g∈K max {d(y1,g),d(y2,g)}.In this paper, some results on the existence of common fixed points for Banach operator pairs in the framework of convex metric spaces have been proved. For self mappings T and S on K, results are proved on both T- and S- invariant points for a set of best simultaneous approximation. Some results on best K-approximant are also deduced. The results proved generalize and extend some results of I. Beg and M. Abbas^[1], S. Chandok and T.D. Narang^[2], T.D. Narang and S. Chandok^[11], S.A. Sahab, M.S. Khan and S. Sessa^[14], P. Vijayaraju^[20] and P. Vijayaraju and M. Marudai^[21].
文摘提出了名义最佳建筑体形系数及实际最佳建筑体形系数概念并推导出相应的计算公式;分析了建筑体形系数和层高h关系的一种错误理解;提出了建筑形体系数(Building Corresponding Area Coefficient)概念并推导出实际最佳建筑形体系数的计算公式;通过理论及案例分析,验证了建筑形体系数替代建筑体形系数的必要性。