Aggregation of alpha-synuclein leads to the formation of Lewy bodies in the brains of patients affected by Parkinson's disease (PD). Native human alpha-synuclein is unfolded in solution but assumes a partial alpha...Aggregation of alpha-synuclein leads to the formation of Lewy bodies in the brains of patients affected by Parkinson's disease (PD). Native human alpha-synuclein is unfolded in solution but assumes a partial alpha-helical conformation upon transient binding to lipid membranes. Annealing Molecular Dynamics (AMD) was used to generate a diverse set of unfolded conformers of free monomeric wild-type alpha-synuclein and PD-associated mutants A30P and A53T. The AMD conformers were compared in terms of secondary structure, hydrogen bond network, solvent-accessible surface per residue, and molecular volume. The objective of these simulations was to identify structural properties near mutation sites and the non-amyloid component (NAC) region that differ between wild- type and disease-associated variants and may be associated to aggregation of alpha- synuclein. Based on experimental evidence, a hypothesis exists that aggregation involves the formation of intermolecular beta sheets. According to our results, disease-associated mutants of alpha-synuclein are no more propense to contain extended beta regions than wild-type alpha-synuclein. Moreover, extended beta structures (necessary for beta sheet formation) were not found at or around positions 30 and 53, or the NAC region in any unfolded conformer of wild-type, A30P or A53T alpha-synuclein, under the conditions of the simulations. These results do not support the hypothesis that the mutant's higher propensity to aggregation results solely from changes in amino acid sequence leading to changes in secondary structure folding propensity.展开更多
Background:This study was conducted to determine protein molecular structure profiles and quantify the relationship between protein structural features and protein metabolism and bioavailability of blend pel eted prod...Background:This study was conducted to determine protein molecular structure profiles and quantify the relationship between protein structural features and protein metabolism and bioavailability of blend pel eted products(BPP)based on co-products(canola or carinata)from processing with different proportions of pulse pea screenings and lignosulfonate chemical compound.Method:The protein molecular structures were determined using the non-invasive advanced vibrational molecular spectroscopy(ATR-FT/IR)in terms of chemical structure and biofunctional groups of amides(ⅠandⅡ),α-helix andβ-sheet.Results:The results showed that increasing the level of the co-products in BPP significantly increased the spectral intensity of the amide area and amide height.The products exhibited similar protein secondaryα-helix toβ-sheet ratio.The protein molecular structure profiles(amidesⅠandⅡ,α-helix toβ-sheet)were highly associated with protein degradation kinetics and intestinal digestion.In conclusion,the non-invasive vibrational molecular spectroscopy(ATR-FT/IR)could be used to detect inherent structural make-up characteristics in BPP.Conclusion:The molecular structural features related to protein biopolymer were highly associated with protein utilization and metabolism.展开更多
Using a statistical analysis on beta-sheet structures from the Protein Data Bank, characteristic angles within beta-strands were correlated to the nature of the side chains. The twists were computed from the atomic co...Using a statistical analysis on beta-sheet structures from the Protein Data Bank, characteristic angles within beta-strands were correlated to the nature of the side chains. The twists were computed from the atomic coordinates of five consecutive amino acids’ alpha carbons from single beta-strand sequences. Conditions on the angles for twists to be mainly left-handed are given together with the frequency of occurrence for these non-standard geometrical properties within protein beta-strands. Applications in protein structure prediction and CASP challenges in particular are envisioned by making use of the probabilities of occurrence in protein structures of angle value ranges for given amino acids.展开更多
文摘Aggregation of alpha-synuclein leads to the formation of Lewy bodies in the brains of patients affected by Parkinson's disease (PD). Native human alpha-synuclein is unfolded in solution but assumes a partial alpha-helical conformation upon transient binding to lipid membranes. Annealing Molecular Dynamics (AMD) was used to generate a diverse set of unfolded conformers of free monomeric wild-type alpha-synuclein and PD-associated mutants A30P and A53T. The AMD conformers were compared in terms of secondary structure, hydrogen bond network, solvent-accessible surface per residue, and molecular volume. The objective of these simulations was to identify structural properties near mutation sites and the non-amyloid component (NAC) region that differ between wild- type and disease-associated variants and may be associated to aggregation of alpha- synuclein. Based on experimental evidence, a hypothesis exists that aggregation involves the formation of intermolecular beta sheets. According to our results, disease-associated mutants of alpha-synuclein are no more propense to contain extended beta regions than wild-type alpha-synuclein. Moreover, extended beta structures (necessary for beta sheet formation) were not found at or around positions 30 and 53, or the NAC region in any unfolded conformer of wild-type, A30P or A53T alpha-synuclein, under the conditions of the simulations. These results do not support the hypothesis that the mutant's higher propensity to aggregation results solely from changes in amino acid sequence leading to changes in secondary structure folding propensity.
基金financially supported by the grants from Sask Pulse Growers,Natural Sciences and Engineering Research Council of Canada(NSERC)the Sask Canola,the Ministry of Agriculture Strategic Research Chair ProgramSask Milk.
文摘Background:This study was conducted to determine protein molecular structure profiles and quantify the relationship between protein structural features and protein metabolism and bioavailability of blend pel eted products(BPP)based on co-products(canola or carinata)from processing with different proportions of pulse pea screenings and lignosulfonate chemical compound.Method:The protein molecular structures were determined using the non-invasive advanced vibrational molecular spectroscopy(ATR-FT/IR)in terms of chemical structure and biofunctional groups of amides(ⅠandⅡ),α-helix andβ-sheet.Results:The results showed that increasing the level of the co-products in BPP significantly increased the spectral intensity of the amide area and amide height.The products exhibited similar protein secondaryα-helix toβ-sheet ratio.The protein molecular structure profiles(amidesⅠandⅡ,α-helix toβ-sheet)were highly associated with protein degradation kinetics and intestinal digestion.In conclusion,the non-invasive vibrational molecular spectroscopy(ATR-FT/IR)could be used to detect inherent structural make-up characteristics in BPP.Conclusion:The molecular structural features related to protein biopolymer were highly associated with protein utilization and metabolism.
文摘Using a statistical analysis on beta-sheet structures from the Protein Data Bank, characteristic angles within beta-strands were correlated to the nature of the side chains. The twists were computed from the atomic coordinates of five consecutive amino acids’ alpha carbons from single beta-strand sequences. Conditions on the angles for twists to be mainly left-handed are given together with the frequency of occurrence for these non-standard geometrical properties within protein beta-strands. Applications in protein structure prediction and CASP challenges in particular are envisioned by making use of the probabilities of occurrence in protein structures of angle value ranges for given amino acids.
基金supported by the National Science Foundation,USA(CHE1111000)National Institute of Health,USA(GM081655)+3 种基金Army Research Office,USA(W911NF-11-1-0251)Defense Threat Reduction Agency,USA(HDTRA1-11-1-0019)Office of Naval Research,USA(N00014-08-1-1211)Semiconductor Research Corporation,USA(P10419)