Traditional generating algorithms for B Spline curves and surfaces require approximation methods where how to increment the parameter to get the best approximation is problematic; or they take the pixel-based method n...Traditional generating algorithms for B Spline curves and surfaces require approximation methods where how to increment the parameter to get the best approximation is problematic; or they take the pixel-based method needing matrix trans- formation from B Spline representation to Bézier form. Here, a fast, direct point-by-point generating algorithm for B Spline curves and surfaces is presented. The algorithm does not need matrix transformation, can be used for uniform or nonuniform B Spline curves and surfaces of any degree, and has high generating speed and good rendering accuracy.展开更多
Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curv...Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.展开更多
A new method to the problem of fairing planar cubic B-spline curves is introduced in this paper. The method is based on weighted progressive iterative approximation (WPIA for short) and consists of following steps:...A new method to the problem of fairing planar cubic B-spline curves is introduced in this paper. The method is based on weighted progressive iterative approximation (WPIA for short) and consists of following steps: finding the bad point which needs to fair, deleting the bad point, re-inserting a new data point to keep the structm-e of the curve and applying WPIA method with the new set of the data points to obtain the faired curve. The new set of the data points is formed by the rest of the original data points and the new inserted point. The method can be used for shape design and data processing. Numerical examples are provided to demonstrate the effectiveness of the method.展开更多
This paper presents a class of Cn- continuous B- type spline curves with some paramet- ric factors.The length of their local support is equal to4.Taking the different values of the parametric factors,the curves can ...This paper presents a class of Cn- continuous B- type spline curves with some paramet- ric factors.The length of their local support is equal to4.Taking the different values of the parametric factors,the curves can become free- type curves or interpolate a set of given points even mix the both cases.When the parametric factors satisfy the certain conditions,the degrees of the curves can be decreased as low as possible.Besides,when all the parametric factors tend to zero,the curves globally approximate to the control polygon.展开更多
A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two par...A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a symmetric knot vector is selected in order to get symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.展开更多
Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing f...Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.展开更多
Cubic algebraic hyperbolic (AH) Bezier curves and AH spline curves are defined with a positive parameter a in the space spanned by {1, t, sinht, cosht}. Modifying the value of a yields a family ofAH Bezier or spline...Cubic algebraic hyperbolic (AH) Bezier curves and AH spline curves are defined with a positive parameter a in the space spanned by {1, t, sinht, cosht}. Modifying the value of a yields a family ofAH Bezier or spline curves with the family parameter α. For a fixed point on the original curve, it will move on a defined curve called "path of AH curve" (AH Bezier and AH spline curves) when a changes. We describe the geometric effects of the paths and give a method to specify a curve passing through a given point.展开更多
Geometric parameters of the turbine blade are classified according to their destined functions, and the mathematical definition of those parameters in the section curve is introduced in detail. Some parts of the secti...Geometric parameters of the turbine blade are classified according to their destined functions, and the mathematical definition of those parameters in the section curve is introduced in detail. Some parts of the section curve shape can be adjusted freely, offering more flexibility to designers.展开更多
基金Project (No. G1998030401) supported by the National Natural Sci-ence Foundation of China
文摘Traditional generating algorithms for B Spline curves and surfaces require approximation methods where how to increment the parameter to get the best approximation is problematic; or they take the pixel-based method needing matrix trans- formation from B Spline representation to Bézier form. Here, a fast, direct point-by-point generating algorithm for B Spline curves and surfaces is presented. The algorithm does not need matrix transformation, can be used for uniform or nonuniform B Spline curves and surfaces of any degree, and has high generating speed and good rendering accuracy.
基金Supported by the National Natural Science Foundation of China (60873111, 60933007)
文摘Applying the distance function between two B-spline curves with respect to the L2 norm as the approximate error, we investigate the problem of approximate merging of two adjacent B-spline curves into one B-spline curve. Then this method can be easily extended to the approximate merging problem of multiple B-spline curves and of two adjacent surfaces. After minimizing the approximate error between curves or surfaces, the approximate merging problem can be transformed into equations solving. We express both the new control points and the precise error of approximation explicitly in matrix form. Based on homogeneous coordinates and quadratic programming, we also introduce a new framework for approximate merging of two adjacent NURBS curves. Finally, several numerical examples demonstrate the effectiveness and validity of the algorithm.
基金Supported by National Natural Science Foundation of China(No.U1135003 and No.61100126)Ph.D.Programs Foundation of Ministry of Education of China for Young Scholars(No.20100111120023,No.20110111120026)Anhui Provincial Natural Science Foundation(No.11040606Q42)
文摘A new method to the problem of fairing planar cubic B-spline curves is introduced in this paper. The method is based on weighted progressive iterative approximation (WPIA for short) and consists of following steps: finding the bad point which needs to fair, deleting the bad point, re-inserting a new data point to keep the structm-e of the curve and applying WPIA method with the new set of the data points to obtain the faired curve. The new set of the data points is formed by the rest of the original data points and the new inserted point. The method can be used for shape design and data processing. Numerical examples are provided to demonstrate the effectiveness of the method.
文摘This paper presents a class of Cn- continuous B- type spline curves with some paramet- ric factors.The length of their local support is equal to4.Taking the different values of the parametric factors,the curves can become free- type curves or interpolate a set of given points even mix the both cases.When the parametric factors satisfy the certain conditions,the degrees of the curves can be decreased as low as possible.Besides,when all the parametric factors tend to zero,the curves globally approximate to the control polygon.
基金This project is supported by National Natural Science Foundation of China(No.50575098).
文摘A method to reconstruct symmetric B-spline curves and surfaces is presented. The symmetry property is realized by using symmetric knot vector and symmetric control points. Firstly, data points are divided into two parts based on the symmetry axis or symmetry plane extracted from data points. Then the divided data points are parameterized and a symmetric knot vector is selected in order to get symmetric B-spline basis functions. Constraint equations regarding the control points are deduced to keep the control points of the B-spline curve or surface to be symmetric with respect to the extracted symmetry axis or symmetry plane. Lastly, the constrained least squares fitting problem is solved with the Lagrange multiplier method. Two examples from industry are given to show that the proposed method is efficient, robust and able to meet the general engineering requirements.
文摘Abstract For two rational quadratic B spline curves with same control vertexes, the cross ratio of four collinear points are represented: which are any one of the vertexes, and the two points that the ray initialing from the vertex intersects with the corresponding segments of the two curves, and the point the ray intersecting with the connecting line between the two neighboring vertexes. Different from rational quadratic Bézier curves, the value is generally related with the location of the ray, and the necessary and sufficient condition of the ratio being independent of the ray's location is showed. Also another cross ratio of the following four collinear points are suggested, i.e. one vertex, the points that the ray from the initial vertex intersects respectively with the curve segment, the line connecting the segments end points, and the line connecting the two neighboring vertexes. This cross ratio is concerned only with the ray's location, but not with the weights of the curve. Furthermore, the cross ratio is projective invariant under the projective transformation between the two segments.
基金the National Natural Science Foundation of China (No. 60773179)the National Basic Research Program (973) of China (No. G2004CB318000)the School Scientific Research Foundation of Hangzhou Dianzi University (No. KYS091507070), China
文摘Cubic algebraic hyperbolic (AH) Bezier curves and AH spline curves are defined with a positive parameter a in the space spanned by {1, t, sinht, cosht}. Modifying the value of a yields a family ofAH Bezier or spline curves with the family parameter α. For a fixed point on the original curve, it will move on a defined curve called "path of AH curve" (AH Bezier and AH spline curves) when a changes. We describe the geometric effects of the paths and give a method to specify a curve passing through a given point.
文摘Geometric parameters of the turbine blade are classified according to their destined functions, and the mathematical definition of those parameters in the section curve is introduced in detail. Some parts of the section curve shape can be adjusted freely, offering more flexibility to designers.