The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectro...The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectroscopy(XPS). According to the results of micro-flotation, Bi(Ⅲ) ions could largely improve the rutile flotation recovery(from 62% to 91%), and they could increase the activating sites and reduce the competitive adsorption between nonyl hydroxamic acid negative ions and OH-ions, which determined that Bi(Ⅲ) ions were capable of activating rutile flotation. The adsorption of Bi(Ⅲ) ions onto the rutile surface led to the shift of Zeta potential into the positive direction, which was good for the adsorption of nonyl hydroxamic acid anions. In addition, the results of XPS indicated that the chemical environment around Ti atom had not changed before and after the adsorption of Bi(Ⅲ) ions. Based on the adsorption mechanism of Bi(Ⅲ) ions, it was deduced that firstly Bi(Ⅲ) ions occupied the vacancies of the original Ca^2+, Mg^2+ and Fe^2+ ions on the rutile surface; secondly Bi(Ⅲ) ions covered on the rutile surface in the form of hydroxides.展开更多
A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC compo...A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC composite was synthesized via carbonization of Zn-containing zeolitic imidazolate(ZIF-8) and replacement of Zn with Bi, resulting in the N-doped carbon that was hierarchically porous and anchored with Bi nanoparticles. The matrix provides a highly electronic conductive network that facilitates the lithiation/delithiation of Bi.Additionally, it restrains aggregation of Bi nanoparticles and serves as a buffer layer to alleviate the mechanical strain of Bi nanoparticles upon Li insertion/extraction.With these contributions, Bi@NC exhibits excellent cycling stability and rate capacity compared to bare Bi nanoparticles or their simple composites with carbon. This study provides a new approach for fabricating high volumetric energy density LIBs.展开更多
Ray tracing study of electromagnetic ion cyclotron (EMIC) waves is conducted based on a realistic plasma density model. The simulation result shows that EMIC waves propagate away from the equatorial source region to...Ray tracing study of electromagnetic ion cyclotron (EMIC) waves is conducted based on a realistic plasma density model. The simulation result shows that EMIC waves propagate away from the equatorial source region to higher latitudes basically along geomagnetic field lines, and are reflected at the region where their frequency matches the local bi-ion frequency. H+ band suffers H+-He+ bi-ion frequency reflection at lower latitudes, whereas He+ band suffers He+-O+ bi-ion frequency reflection at higher latitudes. Moreover, the concentration of heavy ions slightly affects the bi-ion frequencies and then slightly determines the reflection location of ray paths of EMIC waves. The current results present the first detailed study on the propagation characteristics of EMIC waves associated with bi-ion frequencies.展开更多
The basic properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma (containing inertial ions, kappa distributed electrons with two distinct temperatures, and negatively charged immobile dus...The basic properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma (containing inertial ions, kappa distributed electrons with two distinct temperatures, and negatively charged immobile dust grains) are investi- gated both numerically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The effects of superthermal bi-kappa electrons and ion kinematic viscosity, which are found to modify the basic features of DIA shock waves significantly, are briefly discussed.展开更多
锂离子电池健康状态(state of health,SOH)是电池管理系统的重要参数。精确的SOH估算可以提供故障和老化更换预警,保证储能电站的安全稳定运行。选取充电平均电流、放电平均电压与放电平均温度作为输入特征,结合卷积神经网络(convolutio...锂离子电池健康状态(state of health,SOH)是电池管理系统的重要参数。精确的SOH估算可以提供故障和老化更换预警,保证储能电站的安全稳定运行。选取充电平均电流、放电平均电压与放电平均温度作为输入特征,结合卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM),提出基于CNN-Bi-LSTM的锂离子电池SOH在线估算方法。该方法通过CNN自动提取输入网格数据的空间特征,输入数据获取方便,无须储存大量数据。继而利用Bi-LSTM充分挖掘电池老化过程中的时序特征,最终实现精确SOH估算。美国国家航空航天局(national aeronautics and space administration,NASA)电池老化数据集上的测试结果表明,所提方法估算SOH的平均绝对误差与均方根误差分别低于1.07和1.32,精度优于Bi-LSTM和CNN-LSTM两种方法。展开更多
基金Project(51474254)supported by the National Natural Science Foundation of ChinaProject(2013M531813)supported by the China Postdoctoral Science Foundation+1 种基金Project(2016zzts111)supported by the Independent Exploration and Innovation Program of Central South University,ChinaProject(CSUZC201715)supported by Open-End Fund for the Valuable and Precision Instruments of Central South University,China
文摘The adsorption behavior and mechanism of Bi(Ⅲ) ions on the rutile-water interface were investigated through micro-flotation, Zeta potential measurement, adsorption amount measurement and X-ray photoelectron spectroscopy(XPS). According to the results of micro-flotation, Bi(Ⅲ) ions could largely improve the rutile flotation recovery(from 62% to 91%), and they could increase the activating sites and reduce the competitive adsorption between nonyl hydroxamic acid negative ions and OH-ions, which determined that Bi(Ⅲ) ions were capable of activating rutile flotation. The adsorption of Bi(Ⅲ) ions onto the rutile surface led to the shift of Zeta potential into the positive direction, which was good for the adsorption of nonyl hydroxamic acid anions. In addition, the results of XPS indicated that the chemical environment around Ti atom had not changed before and after the adsorption of Bi(Ⅲ) ions. Based on the adsorption mechanism of Bi(Ⅲ) ions, it was deduced that firstly Bi(Ⅲ) ions occupied the vacancies of the original Ca^2+, Mg^2+ and Fe^2+ ions on the rutile surface; secondly Bi(Ⅲ) ions covered on the rutile surface in the form of hydroxides.
基金supported by the Natural Science Foundation of Guangdong Province (Grant No.2017B030306013)the key project of Science and Technology in Guangdong Province (Grant No.2017A010106006)
文摘A novel bismuth–carbon composite, in which bismuth nanoparticles were anchored in a nitrogen-doped carbon matrix(Bi@NC), is proposed as anode for high volumetric energy density lithium ion batteries(LIBs).Bi@NC composite was synthesized via carbonization of Zn-containing zeolitic imidazolate(ZIF-8) and replacement of Zn with Bi, resulting in the N-doped carbon that was hierarchically porous and anchored with Bi nanoparticles. The matrix provides a highly electronic conductive network that facilitates the lithiation/delithiation of Bi.Additionally, it restrains aggregation of Bi nanoparticles and serves as a buffer layer to alleviate the mechanical strain of Bi nanoparticles upon Li insertion/extraction.With these contributions, Bi@NC exhibits excellent cycling stability and rate capacity compared to bare Bi nanoparticles or their simple composites with carbon. This study provides a new approach for fabricating high volumetric energy density LIBs.
基金supported by National Natural Science Foundation of China(Nos.40925014,41204114,and 41274165)the Aid Program for Scienceand Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,Chinathe Construct Program of theKey Discipline in Hunan Province,China
文摘Ray tracing study of electromagnetic ion cyclotron (EMIC) waves is conducted based on a realistic plasma density model. The simulation result shows that EMIC waves propagate away from the equatorial source region to higher latitudes basically along geomagnetic field lines, and are reflected at the region where their frequency matches the local bi-ion frequency. H+ band suffers H+-He+ bi-ion frequency reflection at lower latitudes, whereas He+ band suffers He+-O+ bi-ion frequency reflection at higher latitudes. Moreover, the concentration of heavy ions slightly affects the bi-ion frequencies and then slightly determines the reflection location of ray paths of EMIC waves. The current results present the first detailed study on the propagation characteristics of EMIC waves associated with bi-ion frequencies.
文摘The basic properties of dust-ion-acoustic (DIA) shock waves in an unmagnetized dusty plasma (containing inertial ions, kappa distributed electrons with two distinct temperatures, and negatively charged immobile dust grains) are investi- gated both numerically and analytically. The hydrodynamic equation for inertial ions has been used to derive the Burgers equation. The effects of superthermal bi-kappa electrons and ion kinematic viscosity, which are found to modify the basic features of DIA shock waves significantly, are briefly discussed.
文摘锂离子电池健康状态(state of health,SOH)是电池管理系统的重要参数。精确的SOH估算可以提供故障和老化更换预警,保证储能电站的安全稳定运行。选取充电平均电流、放电平均电压与放电平均温度作为输入特征,结合卷积神经网络(convolutional neural networks,CNN)和双向长短期记忆网络(bi-directional long short-term memory,Bi-LSTM),提出基于CNN-Bi-LSTM的锂离子电池SOH在线估算方法。该方法通过CNN自动提取输入网格数据的空间特征,输入数据获取方便,无须储存大量数据。继而利用Bi-LSTM充分挖掘电池老化过程中的时序特征,最终实现精确SOH估算。美国国家航空航天局(national aeronautics and space administration,NASA)电池老化数据集上的测试结果表明,所提方法估算SOH的平均绝对误差与均方根误差分别低于1.07和1.32,精度优于Bi-LSTM和CNN-LSTM两种方法。