期刊文献+
共找到2,448篇文章
< 1 2 123 >
每页显示 20 50 100
基于CNN-BiGRU-Attention的短期电力负荷预测 被引量:1
1
作者 任爽 杨凯 +3 位作者 商继财 祁继明 魏翔宇 蔡永根 《电气工程学报》 CSCD 北大核心 2024年第1期344-350,共7页
针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电... 针对目前电力负荷数据随机性强,影响因素复杂,传统单一预测模型精度低的问题,结合卷积神经网络(Convolutional neural network,CNN)、双向门控循环单元(Bi-directional gated recurrent unit,BiGRU)以及注意力机制(Attention)在短期电力负荷预测上的不同优点,提出一种基于CNN-BiGRU-Attention的混合预测模型。该方法首先通过CNN对历史负荷和气象数据进行初步特征提取,然后利用BiGRU进一步挖掘特征数据间时序关联,再引入注意力机制,对BiGRU输出状态给与不同权重,强化关键特征,最后完成负荷预测。试验结果表明,该模型的平均绝对百分比误差(Mean absolute percentage error,MAPE)、均方根误差(Root mean square error,RMSE)、判定系数(R-square,R~2)分别为0.167%、0.057%、0.993,三项指标明显优于其他模型,具有更高的预测精度和稳定性,验证了模型在短期负荷预测中的优势。 展开更多
关键词 卷积神经网络 双向门控循环单元 注意力机制 短期电力负荷预测 混合预测模型
下载PDF
基于Inception-BiLSTM和迁移学习的结构损伤识别
2
作者 王二成 肖俊伟 +3 位作者 李家豪 吴雪 柴颖珂 李彦苍 《科学技术与工程》 北大核心 2024年第18期7776-7784,共9页
针对传统卷积神经网络(convolutional neural network,CNN)方法在时空特征提取存在不足,提出了一种改进的Inception与双向长短期记忆(bi-directional long short-term memory,BiLSTM)联合模型,以全面学习振动信号中的空间和时序信息。首... 针对传统卷积神经网络(convolutional neural network,CNN)方法在时空特征提取存在不足,提出了一种改进的Inception与双向长短期记忆(bi-directional long short-term memory,BiLSTM)联合模型,以全面学习振动信号中的空间和时序信息。首先,构建具有多尺度感受野的Inception模块,自适应地提取不同尺度下的空间特征;其次,BiLSTM序列化处理时间特征,以深度挖掘时间相关性;最后,通过全局平均池化和Softmax分类器来实现钢框架结构的损伤识别。为评估该模型对噪声的鲁棒性,引入高斯白噪声作为干扰。此外,采用迁移学习策略来评估模型在不同强度激励和小样本下的泛化能力,确保适用于不同的损伤识别任务。结果表明,与传统的CNN方法相比,该模型在无噪声条件下及信噪比超过25 dB时保持了100%的识别精度。该方法解决了土木工程应用中样本量不足和不同强度激励的实际挑战。通过微调预训练模型的参数,实现了在不同强度激励和小样本情况下的知识迁移与泛化,从而增强了模型的实际适用性。 展开更多
关键词 钢框架 损伤识别 INCEPTION biLSTM 迁移学习
下载PDF
基于特征分解与Bi-LSTM-Attention模型的风向预测
3
作者 马良玉 段晓冲 +3 位作者 胡景琛 黄日灏 程泽龙 段新会 《电力科学与工程》 2024年第8期63-69,共7页
为便于精准控制风电机组的偏航角度、充分利用风能提高机组发电量,提出一种基于历史数据深度学习的风向超短期预测方法。首先利用变分模态分解将风向数据分解成多个子序列,考虑分解后的残差分量仍保留大量信号特征,进一步采用自适应噪... 为便于精准控制风电机组的偏航角度、充分利用风能提高机组发电量,提出一种基于历史数据深度学习的风向超短期预测方法。首先利用变分模态分解将风向数据分解成多个子序列,考虑分解后的残差分量仍保留大量信号特征,进一步采用自适应噪声完备集合经验模态分解方法对残差分量进行二次分解。在此基础上,结合风速、环境温度等特征,利用具有注意力机制的双向长短期记忆网络对风向进行超短期预测。采用河北某风电场SCADA真实数据,对风向进行5min的超短期预测实验,并与其他方法进行对比,结果表明所提方法具有更好的风向预测效果。 展开更多
关键词 风向预测 变分模态分解 CEEMDAN 双向长短期记忆网络 注意力机制
下载PDF
基于BO-BiGRU-Attention短期电力负荷预测
4
作者 包广斌 张瑞 +2 位作者 彭璐 李明 赵怀森 《计算机技术与发展》 2024年第6期201-206,共6页
电力系统的可靠供应对于工业、商业和居民的生活至关重要。为了满足电力需求并维持电力系统的稳定运行,提高短期电力负荷预测的准确性和可靠性尤为关键;针对负荷数据存在复杂的非线性特性,该文提出一种基于贝叶斯优化算法的双向门控循... 电力系统的可靠供应对于工业、商业和居民的生活至关重要。为了满足电力需求并维持电力系统的稳定运行,提高短期电力负荷预测的准确性和可靠性尤为关键;针对负荷数据存在复杂的非线性特性,该文提出一种基于贝叶斯优化算法的双向门控循环单元和注意力机制(BO-BiGRU-Attention)的混合预测模型对短期电力负荷进行精准预测。首先,使用Min-Max Normalization方法对负荷数据进行归一化处理。其次,利用BiGRU网络捕获序列中的长期依赖关系和上下文信息,结合注意力机制,通过在输入序列的不同部分给予不同的权重,从而突出关键特征。最后,针对BiGRU-Attention模型的超参数难以选取最优解的问题,引入贝叶斯优化算法对BiGRU-Attention模型的超参数进行寻优,完成短期电力负荷的预测。采用印度北部某地区的电力负荷数据进行预测分析,仿真结果表明,BO-BiGRU-Attention网络表现优于其他模型,各误差评价指标最小,其中MAE、RMSE和MAPE分别为56.67,73.49和1.16%,预测精度达到了99.47%。 展开更多
关键词 电力系统 负荷预测 贝叶斯优化算法 双向门控循坏单元 注意力机制
下载PDF
基于聚类的HPO-BILSTM光伏功率短期预测
5
作者 周育才 肖添 +2 位作者 谢七月 付强 钟敏 《太阳能学报》 EI CAS CSCD 北大核心 2024年第4期512-518,共7页
考虑到光伏发电功率在不同天气类型下的波动性和不确定性,对此提出一种基于模糊C均值聚类算法(FCM)和猎食者优化算法(HPO)优化双向长短期记忆网络(BILSTM)的光伏发电短期功率预测模型。首先对光伏发电数据进行处理和分析,再进行主成分分... 考虑到光伏发电功率在不同天气类型下的波动性和不确定性,对此提出一种基于模糊C均值聚类算法(FCM)和猎食者优化算法(HPO)优化双向长短期记忆网络(BILSTM)的光伏发电短期功率预测模型。首先对光伏发电数据进行处理和分析,再进行主成分分析(PCA)降维和FCM聚类算法将数据按天气类型分为阴、晴、雨;最后通过HPO筛选得出BILSTM神经网络的最佳超参数,避免因超参数设置不佳对实验带来的影响,进一步提高实验的准确性和模型的泛化能力。最后通过预测和对比实验进行分析,验证所提方法的优越性。 展开更多
关键词 光伏发电 双向长短期记忆网络 功率预测 降维 聚类 优化算法
下载PDF
基于Bo-BiLSTM网络的IGBT老化失效预测方法
6
作者 万庆祝 于佳松 +1 位作者 佟庆彬 闵现娟 《电气技术》 2024年第3期1-10,共10页
针对绝缘栅双极型晶体管(IGBT)受热应力冲击后对其进行老化失效预测精度不高的情况,提出一种基于贝叶斯优化(Bo)-双向长短期记忆(BiLSTM)网络的IGBT老化失效预测方法。首先分析IGBT模块老化失效原理,然后基于NASA老化实验数据集建立失... 针对绝缘栅双极型晶体管(IGBT)受热应力冲击后对其进行老化失效预测精度不高的情况,提出一种基于贝叶斯优化(Bo)-双向长短期记忆(BiLSTM)网络的IGBT老化失效预测方法。首先分析IGBT模块老化失效原理,然后基于NASA老化实验数据集建立失效特征数据库,最后利用Matlab软件构造Bo-BiLSTM网络预测失效特征参数数据。选取常用回归预测性能评估指标将长短期记忆(LSTM)网络模型、BiLSTM网络模型与Bo-BiLSTM网络模型的预测结果进行对比分析。结果表明,Bo-BiLSTM网络的模型拟合精度更高,基于Bo-BiLSTM网络的IGBT老化失效预测方法具有较好的预测效果,能够应用于IGBT的失效预测。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 贝叶斯优化 双向长短期记忆(biLSTM)网络 老化失效预测
下载PDF
基于TCN-BiLSTM网络的电力电缆故障诊断
7
作者 胡业林 王子涵 《佳木斯大学学报(自然科学版)》 CAS 2024年第4期15-18,43,共5页
为了提升电力电缆故障诊断技术的准确率,解决传统电力电缆诊断过程中操作复杂、可靠性低和精准度不够等问题,提出了一种基于TCN和BiLSTM的电力电缆故障诊断方法。该方法的核心是使用Matlab/Simulink搭建三相电缆的仿真模型,按照电缆的... 为了提升电力电缆故障诊断技术的准确率,解决传统电力电缆诊断过程中操作复杂、可靠性低和精准度不够等问题,提出了一种基于TCN和BiLSTM的电力电缆故障诊断方法。该方法的核心是使用Matlab/Simulink搭建三相电缆的仿真模型,按照电缆的实际参数设置模型,然后提取出电缆的四种短路故障:单相接地短路、双相接地短路、双相相间短路以及三相短路的电压信号。构建电缆故障样本集,搭建TCN和BiLSTM网络对电缆故障信号进行特征提取和序列捕捉,通过与TCN网络和CNN-BiLSTM网络进行实验对比,以及对从淮南某煤矿采集到的数据进行验证,证明该方法对电缆故障诊断具有良好的性能。 展开更多
关键词 电缆 故障诊断 时域卷积网络 双向长短时记忆网络 短路故障
下载PDF
基于MRSDAE-KPCA结合Bi-LST的滚动轴承剩余使用寿命预测
8
作者 古莹奎 陈家芳 石昌武 《噪声与振动控制》 CSCD 北大核心 2024年第3期95-100,145,共7页
针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承... 针对现有滚动轴承剩余使用寿命预测方法在提取数据特征时没有充分考虑数据的内部分布,且在构建健康因子时还需要专家经验进行人工提取等问题,提出一种基于流形正则化堆栈去噪自编码器、核主成分分析并结合双向长短时记忆网络的滚动轴承剩余使用寿命预测方法。首先采用无监督的堆栈去噪自编码器网络对原始振动数据进行深层特征提取,并使用核主成分分析法进一步降维,以提高健康因子的指标稳定性;然后在堆栈去噪自编码器中加入流形正则化,最大程度保留编码器隐藏层内部的数据分布结构,提高模型提取数据特征的有效性。最后使用双向长短时记忆网络预测轴承的剩余使用寿命,并采用AdaMax优化算法对网络模型的超参数进行自适应寻优。分析结果表明,提出的滚动轴承剩余使用寿命预测方法具有更高的精度。 展开更多
关键词 故障诊断 滚动轴承 剩余使用寿命预测 健康因子 流形正则化堆栈去噪自编码器 双向长短时记忆网络
下载PDF
基于EMD-PSO-Bi LSTM组合模型的短期风电功率预测
9
作者 唐杰 李彬 《自动化应用》 2024年第5期126-129,共4页
风电功率预测对风电并网的稳定运行具有重要意义。为了解决风电功率预测中的精度和模型稳定性问题,引入了EMD-PSO-BiLSTM模型。通过经验模态分解技术将原始风电功率序列分解为一系列固有模态函数,以有效捕捉数据中的多尺度特征,并为每... 风电功率预测对风电并网的稳定运行具有重要意义。为了解决风电功率预测中的精度和模型稳定性问题,引入了EMD-PSO-BiLSTM模型。通过经验模态分解技术将原始风电功率序列分解为一系列固有模态函数,以有效捕捉数据中的多尺度特征,并为每个模态序列建立了各自的预测模型。鉴于双向长短时记忆神经网络良好的泛化能力,建立了基于BiLSTM的各模态预测模型。进一步采用粒子群算法优化了BiLSTM参数,解决了模型非线性、高维、多模态等问题,获得了各模态分量的最优模型,并通过汇总各模态分量的结果得到了风电功率预测值。最后,以湖南省某风电场的实际运行数据为例,验证了EMD-PSO-BiLSTM模型可以有效提高风电功率短期预测精度。 展开更多
关键词 风电功率 短期预测 经验模态分解 粒子群算法 双向长短期记忆网络
下载PDF
LSTM-GAN:融合GAN和Bi-LSTM 的无监督时间序列异常检测 被引量:1
10
作者 陈世伟 李静 +3 位作者 玄佳兴 石竹玉 乔宇杰 高颖 《小型微型计算机系统》 CSCD 北大核心 2024年第1期123-131,共9页
多元时间序列数据的异常检测旨在发现对应时序特征中不符合一般规律的特异性模式,识别特定时间步长中的异常状态.针对多元时序数据时间依赖性建模难以及数据维度不断增加导致难以有效进行异常检测等问题,本文以自编码器为基础,融合生成... 多元时间序列数据的异常检测旨在发现对应时序特征中不符合一般规律的特异性模式,识别特定时间步长中的异常状态.针对多元时序数据时间依赖性建模难以及数据维度不断增加导致难以有效进行异常检测等问题,本文以自编码器为基础,融合生成对抗网络(Generative Adversarial Network,GAN)和双向长短期记忆神经网络(Bi-directional Long Short-Term Memory,Bi-LSTM),提出了一种无监督异常检测模型LSTM-GAN,该模型在每一轮训练中,以迭代的方式重构正常数据,通过GAN来放大异常,Bi-LSTM来捕获时间特性,训练完成后的模型用于时序数据的异常检测.本文在4个公开数据集上和几种先进同类方法进行了对比实验,实验结果表明,LSTM-GAN的检测性能提升了4.4%~16.6%,在IT数据集SMD中的模型检测F1分数达到0.9672,实现了高效的时序数据异常检测. 展开更多
关键词 异常检测 双向长短期记忆网络 生成对抗网络
下载PDF
THE BI DIRECTIONAL REGULATION OF FILAMIN ON THE ATPase ACTIVITY OF SMOOTH MUSCLE MYOSIN 被引量:9
11
作者 林原 孙惠君 +3 位作者 戴淑芳 唐泽耀 贺欣 陈华 《Chinese Medical Sciences Journal》 CAS CSCD 2000年第3期162-164,共3页
The aim of this study is to investigate the functional relationship between filamin, a known actin binding protein, and myosin and the effects of filamin on the interaction between myosin and actin. Methods.Ultra cent... The aim of this study is to investigate the functional relationship between filamin, a known actin binding protein, and myosin and the effects of filamin on the interaction between myosin and actin. Methods.Ultra centrifugation method was used to investigate the binding of filamin to both phosphorylated and unphosphorylated myosins. Mg ATPase activities of both phosphorylated and unphosphorylated myosins in the presence and absence of actin were measured to observe the effects resulted from filamin actin and filamin myosin interactions. Results. It was found that filamin is also a myosin binding protein. Filamin inhibited the actin activated Mg ATPase activity of phosphorylated myosin and stimulated Mg ATPase of phosphorylated myosin in the absence of actin; in addition, filamin stimulated Mg ATPase activity of unphosphorylated myosin in both the presence or absence of actin. Conclusion. The results suggest that the effects of filamin on the myosin Mg ATPase activities are bi directional, i.e., stimulatory via binding to myosin and inhibitory via binding to actin. 展开更多
关键词 bi directional regulation myosin binding myosin actin interaction
下载PDF
基于ATT-CNN-BiLSTM的虚拟编组列车时空轨迹预测
12
作者 柴铭 刘皓元 +2 位作者 苏浩翔 唐涛 刘宏杰 《铁道学报》 EI CAS CSCD 北大核心 2024年第6期80-89,共10页
保障虚拟编组平稳追踪运行的关键问题是实现对列车运行状态的精准预测。针对列车运行过程多变的特点,提出基于融合注意力机制的卷积双向长短期记忆神经网络(ATT-CNN-BiLSTM)的时空轨迹预测方法。针对列车历史运行数据中非正常运行场景... 保障虚拟编组平稳追踪运行的关键问题是实现对列车运行状态的精准预测。针对列车运行过程多变的特点,提出基于融合注意力机制的卷积双向长短期记忆神经网络(ATT-CNN-BiLSTM)的时空轨迹预测方法。针对列车历史运行数据中非正常运行场景稀少产生的数据非均衡问题,利用卷积神经网络和双向长短期记忆网络提取列车运行数据维度之间的特征关联,并增加注意力机制提升泛化能力。同时引入运行时验证方法在线监控预测结果,降低由预测错误造成的行车风险。以成都地铁8号线真实数据为例进行实验,设计5种评价指标,通过基线模型与消融实验对所提ATT-CNN-BiLSTM进行评价,该模型对于异常场景的预测误差至少减小9.626%。 展开更多
关键词 列车状态预测 虚拟编组 深度学习 注意力机制 双向长短期记忆神经网络
下载PDF
基于BiLSTM-LSSVM的螺杆转子铣削加工廓形预测
13
作者 李佳 孙兴伟 +3 位作者 赵泓荀 穆士博 刘寅 杨赫然 《组合机床与自动化加工技术》 北大核心 2024年第9期153-156,162,共5页
针对螺杆转子盘铣刀加工过程中的轮廓预测问题,提出了基于双向长短时神经网络-最小二乘支持向量机(BiLSTM-LSSVM)的螺杆廓形预测方法。首先,对加工过程中的振动信号进行采集并进行降噪预处理,降噪后的信号进行降采样处理随后输入BiLSTM... 针对螺杆转子盘铣刀加工过程中的轮廓预测问题,提出了基于双向长短时神经网络-最小二乘支持向量机(BiLSTM-LSSVM)的螺杆廓形预测方法。首先,对加工过程中的振动信号进行采集并进行降噪预处理,降噪后的信号进行降采样处理随后输入BiLSTM中进行时序预测;其次,对时序预测后的信号进行特征提取,将提取后的特征向量输入LSSVM进行廓形预测;最后,以五头螺杆为例通过正交实验对BiLSTM-LSSVM模型进行试验验证,并对预测廓形进行误差补偿实验。实验结果表明,提出的基于BiLSTM-LSSVM的螺杆廓形预测模型可对螺杆转子盘铣刀加工螺杆廓形进行准确预测,进而为螺杆转子加工廓形补偿提供支持。 展开更多
关键词 螺杆转子 长短时神经网络 最小二乘支持向量机 廓形预测
下载PDF
模型误差影响下基于CNN+BiLSTM神经网络的非圆信号目标直接跟踪算法
14
作者 尹洁昕 王鼎 +1 位作者 杨欣 杨宾 《电子学报》 EI CAS CSCD 北大核心 2024年第4期1315-1329,共15页
针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算... 针对运动观测阵列状态误差与接收频率抖动同时影响下的非圆信号无源跟踪问题,提出了一种基于卷积神经网络(Convolutional Neural Network,CNN)+双向长短时记忆网络(Bi-directional Long Short-Term Memory,BiL⁃STM)的直接跟踪算法.该算法首先利用多运动观测阵列信号各频带间的相关性与辐射源信号的非圆特性,建立模型误差影响下的扩展多站观测矢量;接着利用多个观测时隙内扩展多站观测矢量的信号子空间构造空时特征输入序列;然后设计基于CNN与BiLSTM混合神经网络的直接跟踪模型,通过训练实现对非圆目标的轨迹矢量直接估计.本文算法是从原始数据信号子空间中估计轨迹矢量的直接跟踪模式,相比传统“观测参数估计+滤波轨迹跟踪”的两步估计模式,具有更高的估计精度.由于本文算法在神经网络训练过程中学习到模型误差的信息,因此能够实现对多种误差的校正.仿真结果表明,本文算法较传统两步跟踪算法与现有直接跟踪算法均具有更高的轨迹估计精度,能够明显提升模型误差影响下多站协同跟踪的鲁棒性. 展开更多
关键词 直接跟踪 非圆信号 模型误差 卷积神经网络 双向长短时记忆网络
下载PDF
Construction and analysis of a plant transformation binary vector pBDGG harboring a bi-directional promoter fusing dual visible reporter genes 被引量:3
15
作者 Chunxiao Zhang Ying Gai +3 位作者 Wenqi Wang Yanyan Zhu Xuemei Chen Xiangning Jiang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第4期245-249,共5页
The constitutive promoter of cauliflower mosaic virus 35S (CaMV 35S) is a polar unidirectional promoter and is widely used in plant genetic engineering. In the present study, the unidirectional CaMV 35S promoter has... The constitutive promoter of cauliflower mosaic virus 35S (CaMV 35S) is a polar unidirectional promoter and is widely used in plant genetic engineering. In the present study, the unidirectional CaMV 35S promoter has been modified to a bi-directional promoter by fusing its minimal promoter element to the 5' end of CaMV 35S promoter in the opposite orientation. To qualitatively and quantitatively estimate its bi-directional transcriptional function and activity, two visible reporter genes, gusA (13-glucuronidase, GUS) and gfp (green fluorescent protein, GFP), were fused to the two ends of the promoter in bi-orientations ending with NOS terminator sequences, respectively. Stable expression of gusA and gfp genes in transgenic tobacco (Nicotiana tabacum L.) was visulized by histochemically staining for GUS and fluorescence microscopic observation under UV for GFP in transgenic plants. The expression of two reporter genes showed that the constructed bi-directional promoter did have the bi-directional transcriptional function in both expected orientations. The quantitative estimation of GUS and GFP were determined on a HITACHI F1000 Fluorescence Spectrophotometer with various wavelengths of excitation and emission. The GUS activity varied from g to 250 pmol 4-MU/min/mg protein and the GFP content varied from 0.9 to 1.8 μg/ mg protein in various lines of transgenic tobacco plants. Higher GUS activity generally coupled with lower GFP content, and vice versa. 展开更多
关键词 bi-directional promoter gusA gene gfp gene Nicotiana tabacum L. expression
下载PDF
Experimental Investigation of Local Scour Around A New Pile-Group Foundation for Offshore Wind Turbines in Bi-Directional Current 被引量:4
16
作者 JI Chao ZHANG Jin-feng +2 位作者 ZHANG Qing-he LI Ming-xing CHEN Tong-qing 《China Ocean Engineering》 SCIE EI CSCD 2018年第6期737-745,共9页
The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity ... The local scour around a new pile-group foundation of offshore wind turbine subjected to a bi-directional current was physically modeled with a bi-directional flow flume. In a series of experiments, the flow velocity and topography of the seabed were measured based on a system composed of plane positioning equipment and an ADV.Experimental results indicate that the development of the scour hole was fast at the beginning, but then the scour rate decreased until reaching equilibrium. Erosion would occur around each pile of the foundation. In most cases, the scour pits were connected in pairs and the outside widths of the scour holes were larger than the inner widths. The maximum scour depth occurred at the side pile of the foundation for each test. In addition, a preliminary investigation shows that the larger the flow velocity, the larger the scour hole dimensions but the shorter equilibrium time. The field maximum scour depth around the foundation was obtained based on the physical experiments with the geometric length scales of 1:27.0, 1:42.5 and 1:68.0, and it agrees with the scour depth estimated by the HEC-18 equation. 展开更多
关键词 offshore wind turbines new pile-group foundation local scour bi-directional current
下载PDF
基于1DCNN-BiLSTM的端到端滚动轴承故障诊断方法
17
作者 徐行 李军星 +1 位作者 贾现召 邱明 《机床与液压》 北大核心 2024年第11期211-218,共8页
针对滚动轴承早期故障诊断时时频域特征选取主观性强、时序特征信息利用不足等问题,提出一种基于卷积神经网络和双向长短时记忆神经网络的滚动轴承早期故障诊断方法。采用卷积神经网络提取原始振动信号特征,并在卷积层后引入批正则化层... 针对滚动轴承早期故障诊断时时频域特征选取主观性强、时序特征信息利用不足等问题,提出一种基于卷积神经网络和双向长短时记忆神经网络的滚动轴承早期故障诊断方法。采用卷积神经网络提取原始振动信号特征,并在卷积层后引入批正则化层,以消除数据的不规则性对权重优化的影响,并通过扩展首层卷积层和调整步长以提高特征提取效率。引入双向长短时记忆神经网络提升卷积神经网络对时序特征的提取能力,通过批正则化层和Dropout层增强模型的鲁棒性和减少神经元与神经元之间的依赖关系。最后,通过滚动轴承试验数据对文中方法进行验证。结果表明:与传统方法相比,文中方法不仅训练速度更快,而且故障诊断准确率也大幅提高。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络(CNN) 双向长短时记忆神经网络(biLSTM)
下载PDF
多角度基于CEEMDAN-CNN-BiLSTM模型的锂离子电池RUL预测
18
作者 郭喜峰 王凯泽 +2 位作者 单丹 郑迪 宁一 《太阳能学报》 EI CAS CSCD 北大核心 2024年第7期181-189,共9页
通过构建模型对锂离子电池剩余使用寿命进行预测,并探究温度及网络参数对所构建模型预测精准度的影响,进而提高模型的预测精准度。提出自适应噪声完全集合经验模态分解(CEEMDAN)和一维卷积神经网络(1D CNN)与双向长短期记忆(BiLSTM)神... 通过构建模型对锂离子电池剩余使用寿命进行预测,并探究温度及网络参数对所构建模型预测精准度的影响,进而提高模型的预测精准度。提出自适应噪声完全集合经验模态分解(CEEMDAN)和一维卷积神经网络(1D CNN)与双向长短期记忆(BiLSTM)神经网络相结合的锂离子电池剩余寿命预测方法。选取容量作为健康因子,然后利用CEEMDAN对复杂不平稳数据进行分解,得到稳定的分量。利用1D CNN对锂离子电池容量数据进行深度挖掘,最后利用双BiLSTM神经网络建模对锂离子电池剩余使用寿命(RUL)进行预测。采用NASA数据集和CALCE数据集进行测试,在不同温度与网络参数下进行预测效果对比,并与BiLSTM模型、SVR模型、CNN-BiLSTM模型进行预测对比。 展开更多
关键词 锂离子电池 剩余使用寿命 卷积神经网络 自适应噪声完全集合经验模态分解 双向长短期记忆神经网络
下载PDF
基于自注意力机制TCN-BiGRU的交通流预测
19
作者 郝椿淋 张剑 《电子测量技术》 北大核心 2024年第8期61-68,共8页
为更精准地预测道路交通流,本文提出了基于自注意力机制TCN-BiGRU的交通流预测模型。该预测模型首先利用时间卷积网络(TCN)的卷积特性跨时间步的提取交通流数据中的时间相关性;其次,利用BiGRU双向捕捉交通流的时间相关特性,经过更新门... 为更精准地预测道路交通流,本文提出了基于自注意力机制TCN-BiGRU的交通流预测模型。该预测模型首先利用时间卷积网络(TCN)的卷积特性跨时间步的提取交通流数据中的时间相关性;其次,利用BiGRU双向捕捉交通流的时间相关特性,经过更新门和复位门后更全面的提取交通流的时间特性;考虑到双向门控循环单元在双向计算过程中存在有并行性较低和部分特征无法捕捉的情况,引入自注意力机制能够让模型能够注意到全局中不同输入之间的相关性,让模型能够不受序列长度限制的特征捕捉的难题,最大限度的保留特征进而提高模型的鲁棒性,最终得到交通流的预测值。为验证模型的适用性,本文选取真实的交通数据进行多组预测对比实验,在单一路段将预测结果与基准模型和多路段的经典模型以及消融进行对比,结果表明基于自注意力机制TCN-BIGRU对于多特征的单一路段或多路段的预测结果表现为:单一路段的MAE,MAPE/%,R^(2)平均值分别为15.91,10.89,0.976;多路段的MAE,MAPE/%,R^(2)分别为19.62,13.53,0.982,具有较好的预测效果,所建立的组合预测模型在预测精度上表现出更好的水平,为交通流的预测提供了良好的参考价值。 展开更多
关键词 交通流 时间卷积网络 双向GRU 自注意机制
下载PDF
Quantitative measurements of one-dimensional OH absolute concentration profiles in a methane/air flat flame by bi-directional laser-induced fluorescence 被引量:3
20
作者 于欣 杨振 +5 位作者 彭江波 张蕾 马欲飞 杨超博 李晓晖 孙锐 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期270-279,共10页
The one-dimensional (1D) spatial distributions of OH absolute concentration in methane/air laminar premixed flat flame under different equivalence ratios at atmospheric pressure are investigated by using bi-directio... The one-dimensional (1D) spatial distributions of OH absolute concentration in methane/air laminar premixed flat flame under different equivalence ratios at atmospheric pressure are investigated by using bi-directional laser-induced flu- orescence (LIF) detection scheme combined with the direct absorption spectroscopy. The effective peak absorption cross section and the average temperature at a height of 2 mm above the burner are obtained by exciting absorption on the Q1(8) rotational line in the A2∑+ (Dt = 0) ←- X2∏ (v = 0) at 309.240 nm. The measured values are 1.86×10-15 cm2 and 1719 K, respectively. Spatial filtering and frequency filtering methods of reducing noise are used to deal with the experi- mental data, and the smoothing effects are also compared using the two methods. The spatial distribution regularities of OH concentration are obtained with the equivalence ratios ranging from 0.8 to 1.3. The spatial resolution of the measured result is 84μm. Finally, a comparison is made between the experimental result of this paper and other relevant study results. 展开更多
关键词 bi-directional laser-induced fluorescence laminar premixed flat flame hydroxyl radical absoluteconcentration
下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部