Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and im...Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and impact problems by translating non-linear complementary conditions into equivalent formulation of non-linear program- ming. For contact-impact problems, a larger time-step can be adopted arriving at numer- ical convergence compared with penalty method. By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions, a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to im- prove precision and efficiency of numerical solutions. A numerical example shows that the algorithm we suggested is valid and exact.展开更多
A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special tec...A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast.展开更多
Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based ...Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.展开更多
Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremend...Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.展开更多
The bi-conjugate gradients(Bi-CG)and bi-conjugate residual(Bi-CR)methods are powerful tools for solving nonsymmetric linear systems Ax=b.By using Kronecker product and vectorization operator,this paper develops the Bi...The bi-conjugate gradients(Bi-CG)and bi-conjugate residual(Bi-CR)methods are powerful tools for solving nonsymmetric linear systems Ax=b.By using Kronecker product and vectorization operator,this paper develops the Bi-CG and Bi-CR methods for the solution of the generalized Sylvester-transpose matrix equationp i=1(Ai X Bi+Ci XTDi)=E(including Lyapunov,Sylvester and Sylvester-transpose matrix equations as special cases).Numerical results validate that the proposed algorithms are much more efcient than some existing algorithms.展开更多
We develop a fast stochastic Galerkin method for an optimal control problem governed by a random space-fractional diffusion equation with deterministic constrained control. Optimal control problems governed by a fract...We develop a fast stochastic Galerkin method for an optimal control problem governed by a random space-fractional diffusion equation with deterministic constrained control. Optimal control problems governed by a fractional diffusion equation tends to provide a better description for transport or conduction processes in heterogeneous media. Howev- er, the fractional control problem introduces significant computation complexity due to the nonlocal nature of fractional differential operators, and this is further worsen by the large number of random space dimensions to discretize the probability space. We ap- proximate the optimality system by a gradient algorithm combined with the stochastic Galerkin method through the discretization with respect to both the spatial space and the probability space. The resulting linear system can be decoupled for the random and spatial variable, and thus solved separately. A fast preconditioned Bi-Conjugate Gradient Stabilized method is developed to efficiently solve the decoupled systems derived from the fractional diffusion operators in the spatial space. Numerical experiments show the utility of the method.展开更多
文摘Based on the numerical governing formulation and non-linear complementary conditions of contact and impact problems, a reduced projection augmented Lagrange bi- conjugate gradient method is proposed for contact and impact problems by translating non-linear complementary conditions into equivalent formulation of non-linear program- ming. For contact-impact problems, a larger time-step can be adopted arriving at numer- ical convergence compared with penalty method. By establishment of the impact-contact formulations which are equivalent with original non-linear complementary conditions, a reduced projection augmented Lagrange bi-conjugate gradient method is deduced to im- prove precision and efficiency of numerical solutions. A numerical example shows that the algorithm we suggested is valid and exact.
文摘A new favorable iterative algorithm named as PBiCGSTAB (preconditioned bi-conjugate gradient stabilized) algorithm is presented for solving large sparse complex systems. Based on the orthogonal list, the special technique of only storing non-zero elements is carried out. The incomplete LU factorization without fill-ins is adopted to reduce the condition number of the coefficient matrix. The BiCGSTAB algorithm is extended from the real system to the complex system and it is used to solve the preconditioned complex linear equations. The locked-rotor state of a single-sided linear induction machine is simulated by the software programmed with the finite element method and the PBiCGSTAB algorithm. Then the results are compared with those from the commercial software ANSYS, showing the validation of the proposed software. The iterative steps required for the proposed algorithm are reduced to about one-third, when compared to the BiCG method, therefore the algorithm is fast.
基金supported by the China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2011ZX05004-003)the Basic Research Programs of CNPC during the 12th Five-Year Plan Period (NO.2011A-3603)+1 种基金the Natural Science Foundation of China (No.41104066)the RIPED Young Professional Innovation Fund (NO.2010-13-16-02, 2010-A-26-02)
文摘Although full waveform inversion in the frequency domain can overcome the local minima problem in the time direction, such problem still exists in the space direction because of the media subsurface complexity. Based on the optimal steep descent methods, we present an algorithm which combines the preconditioned bi-conjugated gradient stable method and the multi-grid method to compute the wave propagation and the gradient space. The multiple scale prosperity of the waveform inversion and the multi-grid method can overcome the inverse problems local minima defect and accelerate convergence. The local inhomogeneous three-hole model simulated results and the Marmousi model certify the algorithm effectiveness.
文摘Numerical treatment of engineering application problems often eventually results in a solution of systems of linear or nonlinear equations.The solution process using digital computational devices usually takes tremendous time due to the extremely large size encountered in most real-world engineering applications.So,practical solvers for systems of linear and nonlinear equations based on multi graphic process units(GPUs)are proposed in order to accelerate the solving process.In the linear and nonlinear solvers,the preconditioned bi-conjugate gradient stable(PBi-CGstab)method and the Inexact Newton method are used to achieve the fast and stable convergence behavior.Multi-GPUs are utilized to obtain more data storage that large size problems need.
文摘The bi-conjugate gradients(Bi-CG)and bi-conjugate residual(Bi-CR)methods are powerful tools for solving nonsymmetric linear systems Ax=b.By using Kronecker product and vectorization operator,this paper develops the Bi-CG and Bi-CR methods for the solution of the generalized Sylvester-transpose matrix equationp i=1(Ai X Bi+Ci XTDi)=E(including Lyapunov,Sylvester and Sylvester-transpose matrix equations as special cases).Numerical results validate that the proposed algorithms are much more efcient than some existing algorithms.
基金This work was supported by the National Natural Science Foundation of China under grants 11371229, 11571026 and 11501326, and by the China Scholarship Council (File No. 2013083Y0102).
文摘We develop a fast stochastic Galerkin method for an optimal control problem governed by a random space-fractional diffusion equation with deterministic constrained control. Optimal control problems governed by a fractional diffusion equation tends to provide a better description for transport or conduction processes in heterogeneous media. Howev- er, the fractional control problem introduces significant computation complexity due to the nonlocal nature of fractional differential operators, and this is further worsen by the large number of random space dimensions to discretize the probability space. We ap- proximate the optimality system by a gradient algorithm combined with the stochastic Galerkin method through the discretization with respect to both the spatial space and the probability space. The resulting linear system can be decoupled for the random and spatial variable, and thus solved separately. A fast preconditioned Bi-Conjugate Gradient Stabilized method is developed to efficiently solve the decoupled systems derived from the fractional diffusion operators in the spatial space. Numerical experiments show the utility of the method.