本文报道用分子束外延(Molecular Beam Epitaxy:MBE)技术制备了优良的铬(Cr)掺杂硒化铋(Cr-Bi_(2)Se_(3))薄膜样品。通过反射高能电子衍射(Reflective High Energy Electron Diffraction:RHEED)、X射线衍射(X-ray diffraction:XRD)技术...本文报道用分子束外延(Molecular Beam Epitaxy:MBE)技术制备了优良的铬(Cr)掺杂硒化铋(Cr-Bi_(2)Se_(3))薄膜样品。通过反射高能电子衍射(Reflective High Energy Electron Diffraction:RHEED)、X射线衍射(X-ray diffraction:XRD)技术和电磁输运系统对Cr-Bi_(2)Se_(3)进行测试。实验结果显示:较低的生长温度下Cr进入Bi_(2)Se_(3)中替代Bi位形成Cr Bi;较高的生长温度下Cr进入Bi_(2)Se_(3)中的范德瓦尔斯间隙形成层间(Interlayer)CrI,这一区别导致Cr-Bi_(2)Se_(3)在生长速率及磁性等方面表现出不同的性质。所以可以通过控制生长温度来调制Cr的掺杂位置,得到更理想的效果。展开更多
An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivi...An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si(type-Ⅰ heterojunction) and 90 nm Sb2Se3/Si(type-Ⅱ heterojunction) utilizing terahertz(THz) time-domain spectroscopy(THz-TDS) and a theoretical Drude model. Since type-Ⅰ heterojunctions accelerate carrier recombination and type-Ⅱ heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-Ⅱ heterojunction(21.8×10^(4)S·m^(-1),1.5 × 10^(15)cm^(-3)) are higher than those of the type-Ⅰ heterojunction(11.8×10^(4)S·m^(-1),0.8×10^(15)cm^(-3)). These results demonstrate that a type-Ⅱ heterojunction is superior to a type-Ⅰ heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance.展开更多
As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties a...As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties and easy fabrication method. X-ray photoelectron spectroscopy (XPS) was used to determine the stoichiometry and composition of electroless Sb<sub>2</sub>Se<sub>3</sub> thin films using depth profile studies. The surface layers were analyzed nearly stoichiometric. But the abundant amount of antimony makes the inner layer electrically more conductive.展开更多
文章利用分子束外延方法在蓝宝石衬底上制备Bi_2Se_3拓扑绝缘体薄膜,研究衬底温度对薄膜生长质量的影响。首先对370、380、390、400℃衬底温度下生长的Bi_2Se_3薄膜样品,利用反射高能电子衍射仪(reflection high-energy electron diffra...文章利用分子束外延方法在蓝宝石衬底上制备Bi_2Se_3拓扑绝缘体薄膜,研究衬底温度对薄膜生长质量的影响。首先对370、380、390、400℃衬底温度下生长的Bi_2Se_3薄膜样品,利用反射高能电子衍射仪(reflection high-energy electron diffraction,RHEED)、原子力显微镜(atomic force microscope,AFM)进行表面形貌的表征;利用X射线衍射仪(X-ray diffraction,XRD)和X射线能谱仪(energy dispersive X-ray spectroscopy,EDS)对样品的晶相和化学组分进行分析筛样。结果表明,衬底温度为390℃时制备的Bi_2Se_3薄膜表面平整、成分接近理想配比、结晶质量较好。最后利用综合物性测量系统测量了最佳衬底温度制备的样品的电学性质,表明样品为n型拓扑绝缘体薄膜。展开更多
文摘本文报道用分子束外延(Molecular Beam Epitaxy:MBE)技术制备了优良的铬(Cr)掺杂硒化铋(Cr-Bi_(2)Se_(3))薄膜样品。通过反射高能电子衍射(Reflective High Energy Electron Diffraction:RHEED)、X射线衍射(X-ray diffraction:XRD)技术和电磁输运系统对Cr-Bi_(2)Se_(3)进行测试。实验结果显示:较低的生长温度下Cr进入Bi_(2)Se_(3)中替代Bi位形成Cr Bi;较高的生长温度下Cr进入Bi_(2)Se_(3)中的范德瓦尔斯间隙形成层间(Interlayer)CrI,这一区别导致Cr-Bi_(2)Se_(3)在生长速率及磁性等方面表现出不同的性质。所以可以通过控制生长温度来调制Cr的掺杂位置,得到更理想的效果。
基金supported by the National Fund for Fostering Talents of Basic Science (J1103212)the Foundation for Outstanding Young Scientist in Shandong Province (BS2010CL036)~~
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12261141662, 12074311, and 12004310)。
文摘An in-depth understanding of the photoconductivity and photocarrier density at the interface is of great significance for improving the performance of optoelectronic devices. However, extraction of the photoconductivity and photocarrier density at the heterojunction interface remains elusive. Herein, we have obtained the photoconductivity and photocarrier density of 173 nm Sb2Se3/Si(type-Ⅰ heterojunction) and 90 nm Sb2Se3/Si(type-Ⅱ heterojunction) utilizing terahertz(THz) time-domain spectroscopy(THz-TDS) and a theoretical Drude model. Since type-Ⅰ heterojunctions accelerate carrier recombination and type-Ⅱ heterojunctions accelerate carrier separation, the photoconductivity and photocarrier density of the type-Ⅱ heterojunction(21.8×10^(4)S·m^(-1),1.5 × 10^(15)cm^(-3)) are higher than those of the type-Ⅰ heterojunction(11.8×10^(4)S·m^(-1),0.8×10^(15)cm^(-3)). These results demonstrate that a type-Ⅱ heterojunction is superior to a type-Ⅰ heterojunction for THz wave modulation. This work highlights THz-TDS as an effective tool for studying photoconductivity and photocarrier density at the heterojunction interface. In turn, the intriguing interfacial photoconductivity effect provides a way to improve the THz wave modulation performance.
文摘As a thin film solar cell absorber material, antimony selenide (Sb<sub>2</sub>Se<sub>3</sub>) has become a potential candidate recently because of its unique optical and electrical properties and easy fabrication method. X-ray photoelectron spectroscopy (XPS) was used to determine the stoichiometry and composition of electroless Sb<sub>2</sub>Se<sub>3</sub> thin films using depth profile studies. The surface layers were analyzed nearly stoichiometric. But the abundant amount of antimony makes the inner layer electrically more conductive.
文摘文章利用分子束外延方法在蓝宝石衬底上制备Bi_2Se_3拓扑绝缘体薄膜,研究衬底温度对薄膜生长质量的影响。首先对370、380、390、400℃衬底温度下生长的Bi_2Se_3薄膜样品,利用反射高能电子衍射仪(reflection high-energy electron diffraction,RHEED)、原子力显微镜(atomic force microscope,AFM)进行表面形貌的表征;利用X射线衍射仪(X-ray diffraction,XRD)和X射线能谱仪(energy dispersive X-ray spectroscopy,EDS)对样品的晶相和化学组分进行分析筛样。结果表明,衬底温度为390℃时制备的Bi_2Se_3薄膜表面平整、成分接近理想配比、结晶质量较好。最后利用综合物性测量系统测量了最佳衬底温度制备的样品的电学性质,表明样品为n型拓扑绝缘体薄膜。
基金Supported by the National Natural Science Foundation of China(11304092,51371079,11305056,11304299,51602099)the Open Foundation of Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy(HBSKFZD2014001,HBSKFM2014006,HBSKFM2014013,HBSKFM2014015)