Sol-gel process was adopted to prepare BiFeO3 films.BiFeO3 films were deposited on LaNiO3 coated Si(100) substrates annealed at 500 and 550 ℃,respectively.The X-ray diffraction results reveal that BiFeO3 film has a...Sol-gel process was adopted to prepare BiFeO3 films.BiFeO3 films were deposited on LaNiO3 coated Si(100) substrates annealed at 500 and 550 ℃,respectively.The X-ray diffraction results reveal that BiFeO3 film has a rhombohedrally distorted perovskite structure with space group R3c.The film annealed at 500 ℃ has larger remnant polarization(Pr) of 35.3 μC/cm2.For the film annealed at 550 ℃,smaller remnant polarization of Pr=4.8 μC/cm^2 is observed for its low breakdown electric field.Lower leakage conduction is observed in the film annealed at 500 ℃ at low applied field.展开更多
BiFeO3 is a multiferroic material with physical properties very sensitive to its stoichiometry.BiFeO3 thin films on silicon substrate are prepared by the sol–gel method combined with layer-by-layer annealing and fina...BiFeO3 is a multiferroic material with physical properties very sensitive to its stoichiometry.BiFeO3 thin films on silicon substrate are prepared by the sol–gel method combined with layer-by-layer annealing and final annealing schemes.X-ray diffraction and scanning electron microscopy are employed to probe the phase structures and surface morphologies.Using Rutherford backscattering spectrometry to quantify the nonstoichiometries of BiFeO3 thin films annealed at 100?C–650?C.The results indicate that Bi and Fe cations are close to the stoichiometry of BiFeO3,whereas the deficiency of O anions possibly plays a key role in contributing to the leakage current of 10^-5 A/cm^2 in a wide range of applied voltage rather than the ferroelectric polarizations of BiFeO3 thin films annealed at high temperature.展开更多
Varying the film thickness is a precise route to tune the interfacial strain to manipulate the properties of the multiferroic materials.Here,to explore the effects of the interfacial strain on the properties of the mu...Varying the film thickness is a precise route to tune the interfacial strain to manipulate the properties of the multiferroic materials.Here,to explore the effects of the interfacial strain on the properties of the multiferroic BiFeO_3films,we investigated thickness-dependent structural and polarization evolutions of the BiFeO_3 films.The epitaxial growth with an atomic stacking sequence of BiO/TiO_2 at the interface was confirmed by scanning transmission electron microscopy.Combining X-ray diffraction experiments and first-principles calculations,a thickness-dependent structural evolution was observed from a fully strained tetragonality to a partially relaxed one without any structural phase transition or rotated twins.The tetragonality(c/a) of the BiFeO_3 films increases as the film thickness decreases,while the polarization is in contrast with this trend,and the size effect including the depolarization field plays a crucial role in this contradiction in thinner films.These findings offer an alternative strategy to manipulate structural and polarization properties by tuning the interfacial strain in epitaxial multiferroic thin films.展开更多
Ferroelectric and leakage properties are important for ferroelectric applications. Pure and Nd-doped(x=0.05-0.20) BiFeO3 thin films were fabricated by sol-gel method on FTO substrates. The phase structure, surface m...Ferroelectric and leakage properties are important for ferroelectric applications. Pure and Nd-doped(x=0.05-0.20) BiFeO3 thin films were fabricated by sol-gel method on FTO substrates. The phase structure, surface morphology, leakage current, ferroelectric properties, and optical properties of BiFeO3-based thin films were investigated. The substitution of Nd^3+ ions for the Bi^3+ site converts the structure from rhombohedral to coexisting tetragonal and orthorhombic. Nd doping improves the crystallinity of BiFeO3 thin films. The leakage current of Nd-doped BiFeO3 decreases by two to three orders of magnitude compared with that of pure BiFeO3. Among the samples, 15% Nd-doped BiFeO3 exhibits the strongest ferroelectric polarization of 17.96 μC/cm^2. Furthermore, the absorption edges of Bi1-xNdxFeO3 thin films show a slight red-shift after Nd doping.展开更多
BiFeO3 (BFO) thin films were prepared on Pt(111)/TiO2/SiO2/Si(100) substrates by the pulsed-laser deposition (PLD) technique at a low temperature of 450℃. The XRD results indicate that the BFO thin films are of perov...BiFeO3 (BFO) thin films were prepared on Pt(111)/TiO2/SiO2/Si(100) substrates by the pulsed-laser deposition (PLD) technique at a low temperature of 450℃. The XRD results indicate that the BFO thin films are of perovskite structure with the presence of small amount of second phases. The oxygen pressures have great effect on the crystalline structures and dielectric properties of BFO thin films. The dielectric constant of the BFO thin films decreases with increasing oxygen pressures, achieving 186, 171 and 160 at the frequency of 104 Hz for the oxygen pressures of 0.666, 1.333 and 13.332 Pa, respectively. The BFO thin films prepared at the oxygen pressure of 0.666 Pa reveal a saturated hysteresis loop with the remanent polarization of 7.5 μC/cm2 and the coercive field of 176 kV/cm.展开更多
BiFeO3-PbTiO3 (BFO-PT) thin films were prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD) technique under different oxygen pressures. The structures of the films were characterized by means of XRD...BiFeO3-PbTiO3 (BFO-PT) thin films were prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD) technique under different oxygen pressures. The structures of the films were characterized by means of XRD. The current densities were performed to check the conductivity of the films. The dielectric constant and loss factor (tanδ) of the films were measured. The results show that the BFO-PT layers are mainly perovskite structured; the film deposited under 6.665 Pa exhibits low leakage current, low dielectric loss (0.017-0.041) and saturated hysteresis loop with polarization (Pr) value and coercive field (Ec) of 3 μC/cm2 and 109 kV/cm.展开更多
The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathway...The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathways are found to be located mainly at the grain boundaries of the films. The leakage current density can be tuned by changing the post-annealing temperature, the annealing time, the bias voltage and the light illumination, which can be used to improve the performances of the ferroelectric devices based on the BiFeOa films. A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.展开更多
Bil_xTbxFe03 thin films were prepared on Sn02 (fluorine doped tin oxide) substrates by a sol-gel method. The structural and electrical properties of the BiFe03 thin films were characterized and tested. The results i...Bil_xTbxFe03 thin films were prepared on Sn02 (fluorine doped tin oxide) substrates by a sol-gel method. The structural and electrical properties of the BiFe03 thin films were characterized and tested. The results indicated that the diffraction peak of the Tb-doped BiFe03 films was shifted towards right as the doping amounts were increased. The structure was transformed from the rhombohedral to tetragonal/orthorhombic phase. The Bio.sgTbo.11Fe03 thin film showed the well-developed P-E loops, which enhanced remnant polarization (Pr = 88.05 μC/cm2) at room temperature. The dielectric constant and dielectric loss of Bio.sgTbo.llFe03 thin film at 100 kHz were 185 and 0.018, respectively. Furthermore, the Bio.seTbo.llFe03 thin film showed a relatively low leakage current density of 2.07×10-5 A/cm2 at an applied electric field of 150 kV/cm. The X- ray photoelectron spectroscopy (XPS) spectra indicated that the presence of Fe2+ ions in the Bio.egTbo.11Fe03 thin film was less than that in the pure BiFe03.展开更多
基金Funded by the National Natural Science Foundation of China(No.10874075)the Key Program of Hubei Province Education Committee(No. D20082203)
文摘Sol-gel process was adopted to prepare BiFeO3 films.BiFeO3 films were deposited on LaNiO3 coated Si(100) substrates annealed at 500 and 550 ℃,respectively.The X-ray diffraction results reveal that BiFeO3 film has a rhombohedrally distorted perovskite structure with space group R3c.The film annealed at 500 ℃ has larger remnant polarization(Pr) of 35.3 μC/cm2.For the film annealed at 550 ℃,smaller remnant polarization of Pr=4.8 μC/cm^2 is observed for its low breakdown electric field.Lower leakage conduction is observed in the film annealed at 500 ℃ at low applied field.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11605103,11405117,and 11747074)the Guangdong Provincial Natural Science Foundation,China(Grant Nos.2014A030307008 and 2016A030313670)the Guangdong Provincial Science and Technology Planning Project,China(Grant Nos.2016A010103041 and 2017A010103025)
文摘BiFeO3 is a multiferroic material with physical properties very sensitive to its stoichiometry.BiFeO3 thin films on silicon substrate are prepared by the sol–gel method combined with layer-by-layer annealing and final annealing schemes.X-ray diffraction and scanning electron microscopy are employed to probe the phase structures and surface morphologies.Using Rutherford backscattering spectrometry to quantify the nonstoichiometries of BiFeO3 thin films annealed at 100?C–650?C.The results indicate that Bi and Fe cations are close to the stoichiometry of BiFeO3,whereas the deficiency of O anions possibly plays a key role in contributing to the leakage current of 10^-5 A/cm^2 in a wide range of applied voltage rather than the ferroelectric polarizations of BiFeO3 thin films annealed at high temperature.
基金supported by the National Basic Research Program of China(Grant Nos.2012CB921403 and 2013CB328706)the National Natural Science Foundation of China(Grant Nos.10904030,11004238,11205235,11134012, 11404380,and 11474349)the Strategic Priority Research Program(B) of the Chinese Academy of Sciences(Grant No. XDB07030200)
文摘Varying the film thickness is a precise route to tune the interfacial strain to manipulate the properties of the multiferroic materials.Here,to explore the effects of the interfacial strain on the properties of the multiferroic BiFeO_3films,we investigated thickness-dependent structural and polarization evolutions of the BiFeO_3 films.The epitaxial growth with an atomic stacking sequence of BiO/TiO_2 at the interface was confirmed by scanning transmission electron microscopy.Combining X-ray diffraction experiments and first-principles calculations,a thickness-dependent structural evolution was observed from a fully strained tetragonality to a partially relaxed one without any structural phase transition or rotated twins.The tetragonality(c/a) of the BiFeO_3 films increases as the film thickness decreases,while the polarization is in contrast with this trend,and the size effect including the depolarization field plays a crucial role in this contradiction in thinner films.These findings offer an alternative strategy to manipulate structural and polarization properties by tuning the interfacial strain in epitaxial multiferroic thin films.
基金Funded by the Guangxi Experiment Center of Information Science,China(No:YB1416)
文摘Ferroelectric and leakage properties are important for ferroelectric applications. Pure and Nd-doped(x=0.05-0.20) BiFeO3 thin films were fabricated by sol-gel method on FTO substrates. The phase structure, surface morphology, leakage current, ferroelectric properties, and optical properties of BiFeO3-based thin films were investigated. The substitution of Nd^3+ ions for the Bi^3+ site converts the structure from rhombohedral to coexisting tetragonal and orthorhombic. Nd doping improves the crystallinity of BiFeO3 thin films. The leakage current of Nd-doped BiFeO3 decreases by two to three orders of magnitude compared with that of pure BiFeO3. Among the samples, 15% Nd-doped BiFeO3 exhibits the strongest ferroelectric polarization of 17.96 μC/cm^2. Furthermore, the absorption edges of Bi1-xNdxFeO3 thin films show a slight red-shift after Nd doping.
基金Project (50472098) supported by the National Natural Science Foundation of China
文摘BiFeO3 (BFO) thin films were prepared on Pt(111)/TiO2/SiO2/Si(100) substrates by the pulsed-laser deposition (PLD) technique at a low temperature of 450℃. The XRD results indicate that the BFO thin films are of perovskite structure with the presence of small amount of second phases. The oxygen pressures have great effect on the crystalline structures and dielectric properties of BFO thin films. The dielectric constant of the BFO thin films decreases with increasing oxygen pressures, achieving 186, 171 and 160 at the frequency of 104 Hz for the oxygen pressures of 0.666, 1.333 and 13.332 Pa, respectively. The BFO thin films prepared at the oxygen pressure of 0.666 Pa reveal a saturated hysteresis loop with the remanent polarization of 7.5 μC/cm2 and the coercive field of 176 kV/cm.
基金Project(04A1B18) supported by Shanghai Municipal Education Commission Project(50472098) supported by the National Natural Science Foundation of China Project(04qmx1440) supported by Shanghai Rising Star Program, China
文摘BiFeO3-PbTiO3 (BFO-PT) thin films were prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition (PLD) technique under different oxygen pressures. The structures of the films were characterized by means of XRD. The current densities were performed to check the conductivity of the films. The dielectric constant and loss factor (tanδ) of the films were measured. The results show that the BFO-PT layers are mainly perovskite structured; the film deposited under 6.665 Pa exhibits low leakage current, low dielectric loss (0.017-0.041) and saturated hysteresis loop with polarization (Pr) value and coercive field (Ec) of 3 μC/cm2 and 109 kV/cm.
基金supported by the Chinese Academy of Sciencesthe State Key Project of Fundamental Research of Chinathe Natural Science Foundation of Ningbo,China
文摘The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathways are found to be located mainly at the grain boundaries of the films. The leakage current density can be tuned by changing the post-annealing temperature, the annealing time, the bias voltage and the light illumination, which can be used to improve the performances of the ferroelectric devices based on the BiFeOa films. A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.
基金supported by the Project of the National Natural Science Foundation of China(Grant No.51172135)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.51002092)+1 种基金Research and Special Projects of the Education Department of Shaanxi Province(Grant No.12JK0445)the Graduate Innovation Fund of Shaanxi University of Science and Technology(SUST-A04)
文摘Bil_xTbxFe03 thin films were prepared on Sn02 (fluorine doped tin oxide) substrates by a sol-gel method. The structural and electrical properties of the BiFe03 thin films were characterized and tested. The results indicated that the diffraction peak of the Tb-doped BiFe03 films was shifted towards right as the doping amounts were increased. The structure was transformed from the rhombohedral to tetragonal/orthorhombic phase. The Bio.sgTbo.11Fe03 thin film showed the well-developed P-E loops, which enhanced remnant polarization (Pr = 88.05 μC/cm2) at room temperature. The dielectric constant and dielectric loss of Bio.sgTbo.llFe03 thin film at 100 kHz were 185 and 0.018, respectively. Furthermore, the Bio.seTbo.llFe03 thin film showed a relatively low leakage current density of 2.07×10-5 A/cm2 at an applied electric field of 150 kV/cm. The X- ray photoelectron spectroscopy (XPS) spectra indicated that the presence of Fe2+ ions in the Bio.egTbo.11Fe03 thin film was less than that in the pure BiFe03.