A composite bone cement based onα-TCP with self-reinforcing characteristics is prepared by compounding cellulose whiskers and polyvinyl alcohol in different proportions.In this system,we are inspired by the sea cucum...A composite bone cement based onα-TCP with self-reinforcing characteristics is prepared by compounding cellulose whiskers and polyvinyl alcohol in different proportions.In this system,we are inspired by the sea cucumber,which can alter the stiffness of their inner dermis reversibly.Through the formation of hydrogen bonds between the hydroxyl groups on the cellulose whiskers and PVA,the bone cement matrix can be strengthened during the curing process of cement.In the process of bone cement blending,there is more water,the hydrogen bond connection is destroyed,so the slurry has better fluidity at this time.As the hydration of the bone cement progresses,the reduction of the water phase leads to the formation of a permeable network structure of hydrogen bond connections between the whiskers.The dual-phase action of PVA and whiskers greatly increases the mechanical strength of the bone cement system(5.5 to 23.8 MPa),while the presence of polyvinyl alcohol improves the toughness of the bone cement system.This work was supposed to explore whether the chemoresponsive materials can be adapted to biomedical materials,for example,bone repair.展开更多
In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Py...In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemi- cal changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT4R) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 rain in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.展开更多
High-strength and high-modulus ultra-high molecular weight polyethylene(UHMWPE), named self-reinforced material, was obtained by the elongation of UHMWPE-montmorillonite nanocomposite at melting temperature. According...High-strength and high-modulus ultra-high molecular weight polyethylene(UHMWPE), named self-reinforced material, was obtained by the elongation of UHMWPE-montmorillonite nanocomposite at melting temperature. According to the scanning electron microscope(SEM) analysis, a great deal of fibrillar texture formed in the direction of elongation, and the tensile fractured surface was similar to that of highly oriented fiber. The transmission electron microscope(TEM) and selective area electron diffraction(SAED) analyses reveal that the reinforced phase of the self-reinforced material is an extended chain crystal and its size is about 50_200 nm wide and several microns long, and the montmorillonite layers are broken up to pieces in the size from 100 to 10 nm. The broken layers which have a huge surface area interacting strongly with macromolecules reduces the entanglement density of UHMWPE and induces the chain orientation in flow field. It is supposed that the astriction of montmorillonite layers to polyethylene chains is not only end-tethered but also side-tethered. The differential scan calorimetry(DSC) analysis shows that there are two endothermal peaks for the self-reinforced material, of which the peak at a higher temperature(136.4 ℃) is ascribed to the melting of the reinforced phase.展开更多
CeO2/YSZ/CeO2 buffer layers were deposited on biaxially textured Ni substrates by pulsed laser deposition. The influence of the processing parameters on the texture development of the seed layer CeO2 was investigated....CeO2/YSZ/CeO2 buffer layers were deposited on biaxially textured Ni substrates by pulsed laser deposition. The influence of the processing parameters on the texture development of the seed layer CeO2 was investigated. Epitaxial films of YBCO were then grown in situ on the CeO2/YSZ (yttria-stabilized ZrO2)/CeO2-buffered Ni substrates. The resulting YBCO conductors exhibited self-fleld critical current density Jc of more than 1 MA/cm^2 at 77K and superconducting transition temperature Tc of about 91K.展开更多
The surface morphology of buffer layer yttrium-stabilized zirconia (YSZ) of YBa2CuaO7-σ (YBCO) high temperature superconducting films relies on a series of controllable experimental parameters. In this work, we f...The surface morphology of buffer layer yttrium-stabilized zirconia (YSZ) of YBa2CuaO7-σ (YBCO) high temperature superconducting films relies on a series of controllable experimental parameters. In this work, we focus on the influence of pulsed laser frequency and target crystalline type on surface morphology of YSZ films deposited by pulsed laser deposition (PLD) on rolling assisted biaxially textured substrate tapes. Usually two kinds of particles are observed in the YSZ layer: randomly distributed ones on the whole film and self-assembled ones along grain boundaries. SEM images are used to prove that particles can be partly removed when choosing dense targets of single crystalline. Lower frequency of pulsed laser also contributes to a smoother film surface. TEM images are used to view the crystalline structure of thin film. Thus we can obtain a basic understanding of how to prepare a particle-free YSZ buffer layer for YBCO in optimized conditions using PLD. The YBCO layer with nice structure and critical current density of around 5 MA/cm2 can be reached on smooth YSZ samples.展开更多
This paper presents an undrained semi-analytical elastoplastic solution for cylindrical cavity expansion in anisotropic soil under the biaxial stress conditions.The advanced simplified SANICLAY model is used to simula...This paper presents an undrained semi-analytical elastoplastic solution for cylindrical cavity expansion in anisotropic soil under the biaxial stress conditions.The advanced simplified SANICLAY model is used to simulate the elastoplastic behavior of soil.The cavity expansion is treated as an initial value problem and solved as a system of eight first-order ordinary differential equations including four stress components and four anisotropic parameters.The results are validated by comparing the new solutions with existing ones.The distributions of stress components and anisotropic parameters around the cavity wall,the expansion process,the stress yield trajectory of a soil element and the shape and size of elastoplastic boundary are further investigated to explore the cavity expansion response of soils under biaxial in situ stresses.The results of extensive parameters analysis demonstrate that the circumferential position of the soil element and the anisotropy of the soils have noticeable impacts on the expansion response under biaxial in situ stresses.Since the present solution not only considers the anisotropy and anisotropy evolution of natural soil,but also eliminates the conventional assumption of uniform radial pressure,the solution is better than other theoretical solutions to explain the pressure test and pile installation effect of shallow saturated soil.展开更多
Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue...Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm.展开更多
In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering di...In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC.展开更多
为明确MSS、Casciati和Harvey and Gavin这3种常用双向恢复力模型计算基础隔震建筑风振响应的差异,采用3种模型模拟铅芯橡胶支座在水平单向和双向位移下的恢复力,对比试验或有限元结果的差异,采用3种模型对一算例在双向风荷载下隔震层...为明确MSS、Casciati和Harvey and Gavin这3种常用双向恢复力模型计算基础隔震建筑风振响应的差异,采用3种模型模拟铅芯橡胶支座在水平单向和双向位移下的恢复力,对比试验或有限元结果的差异,采用3种模型对一算例在双向风荷载下隔震层位移、顶点位移和顶点加速度3个指标的差异进行了分析。研究表明:3种模型模拟铅芯橡胶支座在单向循环位移、方形和偏置方形位移下恢复力的趋势基本一致;而模拟圆形和偏置圆形位移时,MSS模型双向恢复力形状与有限元结果不同,不能较为准确地模拟支座双向耦合行为,Casciati模型误差稍小于Harvey and Gavin模型。Casciati模型和Harvey and Gavin模型计算风振响应基本一致;对于横风向响应均方根,3种模型差距不大;对于顺风向隔震层位移、顶点位移和顶点加速度均方根,MSS模型稍小,而对于顺、横风向隔震层位移峰值因子,MSS模型稍大;对于顺、横风向顶点加速度峰值因子和双向与单向模型顶点加速度最值比值随风速变化规律,MSS模型与其他模型差异较大。基于双向耦合效应模拟及风振响应指标的差异,建议采用Casciati模型考虑双向恢复力模型对基础隔震建筑风振响应的影响。展开更多
The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone t...The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.31670969,82172440)the Fundamental Research Funds for the Central Universities(Nos.21620417,21621103)+2 种基金the Medical Joint Fund of Jinan University(No.YXJC2022005)the National Key Research and Development Program of China(No.2022YFE0206200)the Funding of Science and Technology Projects in Guangzhou(Nos.202206010158,202201020087)。
文摘A composite bone cement based onα-TCP with self-reinforcing characteristics is prepared by compounding cellulose whiskers and polyvinyl alcohol in different proportions.In this system,we are inspired by the sea cucumber,which can alter the stiffness of their inner dermis reversibly.Through the formation of hydrogen bonds between the hydroxyl groups on the cellulose whiskers and PVA,the bone cement matrix can be strengthened during the curing process of cement.In the process of bone cement blending,there is more water,the hydrogen bond connection is destroyed,so the slurry has better fluidity at this time.As the hydration of the bone cement progresses,the reduction of the water phase leads to the formation of a permeable network structure of hydrogen bond connections between the whiskers.The dual-phase action of PVA and whiskers greatly increases the mechanical strength of the bone cement system(5.5 to 23.8 MPa),while the presence of polyvinyl alcohol improves the toughness of the bone cement system.This work was supposed to explore whether the chemoresponsive materials can be adapted to biomedical materials,for example,bone repair.
文摘In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chlo- ride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemi- cal changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT4R) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR- FTIR) spectroscopy after treatment for 2 min, 4 min and 6 rain in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.
文摘High-strength and high-modulus ultra-high molecular weight polyethylene(UHMWPE), named self-reinforced material, was obtained by the elongation of UHMWPE-montmorillonite nanocomposite at melting temperature. According to the scanning electron microscope(SEM) analysis, a great deal of fibrillar texture formed in the direction of elongation, and the tensile fractured surface was similar to that of highly oriented fiber. The transmission electron microscope(TEM) and selective area electron diffraction(SAED) analyses reveal that the reinforced phase of the self-reinforced material is an extended chain crystal and its size is about 50_200 nm wide and several microns long, and the montmorillonite layers are broken up to pieces in the size from 100 to 10 nm. The broken layers which have a huge surface area interacting strongly with macromolecules reduces the entanglement density of UHMWPE and induces the chain orientation in flow field. It is supposed that the astriction of montmorillonite layers to polyethylene chains is not only end-tethered but also side-tethered. The differential scan calorimetry(DSC) analysis shows that there are two endothermal peaks for the self-reinforced material, of which the peak at a higher temperature(136.4 ℃) is ascribed to the melting of the reinforced phase.
文摘CeO2/YSZ/CeO2 buffer layers were deposited on biaxially textured Ni substrates by pulsed laser deposition. The influence of the processing parameters on the texture development of the seed layer CeO2 was investigated. Epitaxial films of YBCO were then grown in situ on the CeO2/YSZ (yttria-stabilized ZrO2)/CeO2-buffered Ni substrates. The resulting YBCO conductors exhibited self-fleld critical current density Jc of more than 1 MA/cm^2 at 77K and superconducting transition temperature Tc of about 91K.
基金Supported by the ITER Project of the Ministry of Science and Technology of China under Grant No 2011GB113004the Shanghai Commission of Science and Technology under Grant No 11DZ1100402the Youth Fund of the National Natural Science Foundation of China under Grant No 11204174
文摘The surface morphology of buffer layer yttrium-stabilized zirconia (YSZ) of YBa2CuaO7-σ (YBCO) high temperature superconducting films relies on a series of controllable experimental parameters. In this work, we focus on the influence of pulsed laser frequency and target crystalline type on surface morphology of YSZ films deposited by pulsed laser deposition (PLD) on rolling assisted biaxially textured substrate tapes. Usually two kinds of particles are observed in the YSZ layer: randomly distributed ones on the whole film and self-assembled ones along grain boundaries. SEM images are used to prove that particles can be partly removed when choosing dense targets of single crystalline. Lower frequency of pulsed laser also contributes to a smoother film surface. TEM images are used to view the crystalline structure of thin film. Thus we can obtain a basic understanding of how to prepare a particle-free YSZ buffer layer for YBCO in optimized conditions using PLD. The YBCO layer with nice structure and critical current density of around 5 MA/cm2 can be reached on smooth YSZ samples.
基金the financial support provided by the National Natural Science Foundation of China(Grant No.U1934213)the National Key Research and Development Program of China(Grant Nos.2021YFB2600601 and 2021YFB2600600).
文摘This paper presents an undrained semi-analytical elastoplastic solution for cylindrical cavity expansion in anisotropic soil under the biaxial stress conditions.The advanced simplified SANICLAY model is used to simulate the elastoplastic behavior of soil.The cavity expansion is treated as an initial value problem and solved as a system of eight first-order ordinary differential equations including four stress components and four anisotropic parameters.The results are validated by comparing the new solutions with existing ones.The distributions of stress components and anisotropic parameters around the cavity wall,the expansion process,the stress yield trajectory of a soil element and the shape and size of elastoplastic boundary are further investigated to explore the cavity expansion response of soils under biaxial in situ stresses.The results of extensive parameters analysis demonstrate that the circumferential position of the soil element and the anisotropy of the soils have noticeable impacts on the expansion response under biaxial in situ stresses.Since the present solution not only considers the anisotropy and anisotropy evolution of natural soil,but also eliminates the conventional assumption of uniform radial pressure,the solution is better than other theoretical solutions to explain the pressure test and pile installation effect of shallow saturated soil.
基金funded by the National Natural Science Foundation of China (Grant Number 52075305).
文摘Aiming at the drift problem that the tracking control of the actual load relative to the target load during the electromagnetic excitation biaxial fatigue test of wind turbine blades is easy to drift,a biaxial fatigue testingmachine for electromagnetic excitation is designed,and the following strategy of the actual load and the target load is studied.A Fast Transversal Recursive Least Squares algorithm based on fuzzy logic(Fuzzy FTRLS)is proposed to develop a fatigue loading following dynamic strategy,which adjusts the forgetting factor in the algorithmthrough fuzzy logic to overcome the contradiction between convergence accuracy and convergence speed and solve the phenomenon of amplitude overshoot and phase lag of the actual load relative to the target load.Combined with the previous research results,a simulation model was constructed to verify the strategy’s effectiveness.Field tests were carried out to verify its follow-up effect.The results showthat the tracking error of flapwise and edgewise direction iswithin 4%,which has better robustness and dynamic and static performance than the traditional Recursive Least Squares(RLS)algorithm.
基金supported by the National 12th Five Year Plan of Science and Technology Support Project(2015 BAL02b02)National Spark Plan Project(2015 GA690045),Jiangsu Province“Six Talent Peaks”Team Project(XCL-CXTD−007).
文摘In order to examine the biaxial compression-compression properties of rubber fibre reinforced concrete(RFRC),an experimental study on RFRC under different lateral compressive stresses was carried out by considering different rubber replacement rates and polypropylene fibre contents.The failure modes and mechanical property parameters of different RFRC working conditions were obtained from the experiment to explore the effects of rubber replacement rate and polypropylene fibre content on the biaxial compression-compression properties of RFRC.The following conclusions were drawn.Under the influence of lateral compressive stress,the biaxial compression-compression failure mode gradually developed from a columnar pattern to a flaky pattern,suggesting that the incorporation of rubber and polypropylene fibres into the concrete resulted in a significant change in the development of cracks.For different rubber replacement rates and polypropylene fibre contents,the vertical compressive stress exhibited the same developing trend under the influence of lateral compressive stress.Specifically,the lateral compressive stress imposed the minimum effect on the vertical compressive stress when the rubber replacement rate and polypropylene fibre content were 20%and 0.4%,respectively,and imposed the maximum effect when the rubber replacement rate and polypropylene fibre content were 20%and 0%,respectively.With the increase of rubber replacement rate,the vertical peak stress was significantly reduced,which implies that an appropriate amount of polypropylene fibres can increase the vertical peak stress to a certain extent.Then,the biaxial compression-compression mechanism of RFRC was analysed from the microscopic level by using scanning electron microscope(SEM).Meanwhile,based on Kupfer’s biaxial compression-compression failure criterion and the octahedral stress space,a biaxial compression-compression failure criterion for RFRC was proposed,which was proven to have good applicability.The research results of this study provide important theoretical basis for the engineering application and development of RFRC.
文摘为明确MSS、Casciati和Harvey and Gavin这3种常用双向恢复力模型计算基础隔震建筑风振响应的差异,采用3种模型模拟铅芯橡胶支座在水平单向和双向位移下的恢复力,对比试验或有限元结果的差异,采用3种模型对一算例在双向风荷载下隔震层位移、顶点位移和顶点加速度3个指标的差异进行了分析。研究表明:3种模型模拟铅芯橡胶支座在单向循环位移、方形和偏置方形位移下恢复力的趋势基本一致;而模拟圆形和偏置圆形位移时,MSS模型双向恢复力形状与有限元结果不同,不能较为准确地模拟支座双向耦合行为,Casciati模型误差稍小于Harvey and Gavin模型。Casciati模型和Harvey and Gavin模型计算风振响应基本一致;对于横风向响应均方根,3种模型差距不大;对于顺风向隔震层位移、顶点位移和顶点加速度均方根,MSS模型稍小,而对于顺、横风向隔震层位移峰值因子,MSS模型稍大;对于顺、横风向顶点加速度峰值因子和双向与单向模型顶点加速度最值比值随风速变化规律,MSS模型与其他模型差异较大。基于双向耦合效应模拟及风振响应指标的差异,建议采用Casciati模型考虑双向恢复力模型对基础隔震建筑风振响应的影响。
基金financially supported by the Director Fund of National Energy Deepwater Oil and Gas Engineering Technology Research and Development Center(Grant No.KJQZ-2024-2103)。
文摘The Steel Catenary Riser(SCR)is a vital component for transporting oil and gas from the seabed to the floating platform.The harsh environmental conditions and complex platform motion make the SCR’s girth-weld prone to fatigue failure.The structural stress fatigue theory and Master S-N curve method provide accurate predictions for the fatigue damage on the welded joints,which demonstrate significant potential and compatibility in multi-axial and random fatigue evaluation.Here,we propose a new frequency fatigue model subjected to welded joints of SCR under multiaxial stress,which fully integrates the mesh-insensitive structural stress and frequency domain random process and transforms the conventional welding fatigue technique of SCR into a spectrum analysis technique utilizing structural stress.Besides,a full-scale FE model of SCR with welds is established to obtain the modal structural stress of the girth weld and the frequency response function(FRF)of modal coordinate,and a biaxial fatigue evaluation about the girth weld of the SCR can be achieved by taking the effects of multi-load correlation and pipe-soil interaction into account.The research results indicate that the frequency-domain fatigue results are aligned with the time-domain results,meeting the fatigue evaluation requirements of the SCR.