The effect of HCO3^- concentration on CO2 corrosion was investigated by polarization measurement of potentiodynamic scans and weight-loss method, Under the conditions of high pressure and high temperature, the corrosi...The effect of HCO3^- concentration on CO2 corrosion was investigated by polarization measurement of potentiodynamic scans and weight-loss method, Under the conditions of high pressure and high temperature, the corrosion rate of steel X65 decreased with the increase of HCO3^- concentration, while pH of solution increased. SEM, EDS, and XRD results of the corrosion scales indir cated that the typical FeCO3 crystallite was found at low HCO3^- concentration but Ca(Fe,Mg)(CO3)2 was found at high HCO3^- con- centration. Ca^2+ and Mg^2+ are precipitated preferential to Fe^2+ at high pH value. Potentiodynamic polarization curves showed that the cathodic current density decreases with the increase of HCO3^- concentration at low HCO3^- concentration. When the HCO3^- concentration reaches 0.126 mol/L, increasing HCO3^- concentration promotes cathodic reactions. Anodic behavior is an active process at low HCO3^- concentration and the anodic current density decreases with the increase of HCO3^- concentration. An evident active-passive behavior is exhibited in anodic process at 0.126 mol/L HCO3^-.展开更多
The use of high alkaline medium is a feasible way to provide carbon source and prevent biological contamination for the outdoor cultivation of alkaliphilic microalgae and cyanobacteria.A novel cyanobacterial strain wa...The use of high alkaline medium is a feasible way to provide carbon source and prevent biological contamination for the outdoor cultivation of alkaliphilic microalgae and cyanobacteria.A novel cyanobacterial strain was isolated from the open pond of a marine green alga(Picochlorum sp.SCSIO-45015,Sanya,Hainan)and identified as Cyanobacterium sp.SCSIO-45682.The effects of initial sodium bicarbonate(NaHCO_(3))concentrations on the growth and biochemical composition of Cyanobacterium sp.SCSIO-45682 were investigated.The results demonstrated that Cyanobacterium sp.SCSIO-45682 had good adaptation to 16.8-g/L NaHCO_(3)(the same concentration of NaHCO_(3) used in Zarrouk medium for Spirulina).Moreover,the yields of biomass,polysaccharide,chlorophyll a(chl a),and phycocyanin increased under high NaHCO_(3) concentrations.The maximum final biomass concentration of 2.5 g/L was observed at 8.4-g/L NaHCO_(3),while the highest intracellular total saccharide content of 49.2%of dry weight(DW)and exopolysaccharide(EPS)concentration of 93 mg/L were achieved at the NaHCO_(3) concentration of 16.8 g/L.The crude protein content declined under high NaHCO_(3) concentrations,which provide a possible explanation for the accumulation of polysaccharide.This study shows a good potential of alkaliphilic Cyanobacterium sp.SCSIO-45682 as a polysaccharide feedstock.展开更多
基金financially supported by the National Natural Science Foundation of China Key Program (No.50231020)the National Key Basic Research and Development Plan Program (No. G1999065004)
文摘The effect of HCO3^- concentration on CO2 corrosion was investigated by polarization measurement of potentiodynamic scans and weight-loss method, Under the conditions of high pressure and high temperature, the corrosion rate of steel X65 decreased with the increase of HCO3^- concentration, while pH of solution increased. SEM, EDS, and XRD results of the corrosion scales indir cated that the typical FeCO3 crystallite was found at low HCO3^- concentration but Ca(Fe,Mg)(CO3)2 was found at high HCO3^- con- centration. Ca^2+ and Mg^2+ are precipitated preferential to Fe^2+ at high pH value. Potentiodynamic polarization curves showed that the cathodic current density decreases with the increase of HCO3^- concentration at low HCO3^- concentration. When the HCO3^- concentration reaches 0.126 mol/L, increasing HCO3^- concentration promotes cathodic reactions. Anodic behavior is an active process at low HCO3^- concentration and the anodic current density decreases with the increase of HCO3^- concentration. An evident active-passive behavior is exhibited in anodic process at 0.126 mol/L HCO3^-.
基金Supported by Key-Area Research and Development Program of Guangdong Province(No.2020B1111030004)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0406)+3 种基金the 13th Five-Year Plan Marine Economy Innovation Development Demonstration Project(No.BHSFS004)the Project of State Key Laboratory of Marine Resource Utilization in South China Sea(No.2018004)the Guizhou Education Department Young scientific talents Promoting Program(No.KY[2016]160)the Project of Danzi(WetCode)Group(No.DZ201501)。
文摘The use of high alkaline medium is a feasible way to provide carbon source and prevent biological contamination for the outdoor cultivation of alkaliphilic microalgae and cyanobacteria.A novel cyanobacterial strain was isolated from the open pond of a marine green alga(Picochlorum sp.SCSIO-45015,Sanya,Hainan)and identified as Cyanobacterium sp.SCSIO-45682.The effects of initial sodium bicarbonate(NaHCO_(3))concentrations on the growth and biochemical composition of Cyanobacterium sp.SCSIO-45682 were investigated.The results demonstrated that Cyanobacterium sp.SCSIO-45682 had good adaptation to 16.8-g/L NaHCO_(3)(the same concentration of NaHCO_(3) used in Zarrouk medium for Spirulina).Moreover,the yields of biomass,polysaccharide,chlorophyll a(chl a),and phycocyanin increased under high NaHCO_(3) concentrations.The maximum final biomass concentration of 2.5 g/L was observed at 8.4-g/L NaHCO_(3),while the highest intracellular total saccharide content of 49.2%of dry weight(DW)and exopolysaccharide(EPS)concentration of 93 mg/L were achieved at the NaHCO_(3) concentration of 16.8 g/L.The crude protein content declined under high NaHCO_(3) concentrations,which provide a possible explanation for the accumulation of polysaccharide.This study shows a good potential of alkaliphilic Cyanobacterium sp.SCSIO-45682 as a polysaccharide feedstock.