There are obvious biennial phenomena of circulation, meteorological and climatic elements in the troposphere, named as Tropospheric (Quasi-) Biennial Oscillation (TBO). Many phenomena of TBO are discovered, such as va...There are obvious biennial phenomena of circulation, meteorological and climatic elements in the troposphere, named as Tropospheric (Quasi-) Biennial Oscillation (TBO). Many phenomena of TBO are discovered, such as variations of TBO in tropospheric temperature, pressure, winds field, monsoon and subtropical high etc. The mechanism of TBO is explored and the results demonstrate that tropical ocean (the Indian Ocean and the Pacific Ocean, mainly) and Stratospheric QBO play important roles in the TBO. In addition, Eurasian snow cover and solar activity of 11yr period can affect TBO very possibly.展开更多
The inlcrunnual variation of the vertical distribution of ozone in the tropical stratosphere and its quasi—biennial oscillation (QBO) is analyzed using HALOE data. The results are compared with the wind QBO. A numeri...The inlcrunnual variation of the vertical distribution of ozone in the tropical stratosphere and its quasi—biennial oscillation (QBO) is analyzed using HALOE data. The results are compared with the wind QBO. A numerical experiment is carried out to study the effects of wind QBO on the distribution, and variation of ozone in the stratosphere by using (he NCAR interactive chemical, dynamical, and radiative two—dimensional model (SOCRATES). Data analysis shows that the location of the maximum ozone mixing ratio in the stratosphere changes in the meridional and vertical directions, and assumes a quasi—biennial period. The meridional and vertical motion of the maximum mixing ratio leads to a QBO of column ozone and its hemispheric asymmetry. The QBO of the location of the maximum is closely connected with the zonal wind QBO. The data analysis also shows that in the tropical region, the phase of the QBO for ozone density changes many times with height. Numerical simulation shows that the meridional circulation induced by the wind QBO includes three pairs of cells in the stratosphere, which have hemispheric symmetry. The transport of ozone by the induced meridional circulation in various latitudes and heights is the main dynamic cause for the ozone QBO. Cells of the induced circulation in the middle stratosphere (25-35 km) play an important role in producing the ozone QBO.展开更多
In order to investigate the spatial patterns of the Tropospheric Biennial Oscillation (TBO) on the global scale, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) monthly averaged preci...In order to investigate the spatial patterns of the Tropospheric Biennial Oscillation (TBO) on the global scale, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) monthly averaged precipitation and the Climate Diagnostics Center (CDC) monthly outgoing long-wave radiation (OLR) and SST are used in conjunction with TBO bandpass-filtering. The results indicate active biennial variability in the tropical eastern-central Pacific regions. It is evident that observations reflect the biennial component of the ENSO rather than the TBO itself. Since some studies have pointed out that the TBO is a broad-scale phenomenon differing from the ENSO, to investigate the pure TBO the ENSO signal must be excluded. The Scale Interaction Experiment-FRCGC (SINTEX-F) coupled general circulation model (CGCM) developed at Japan Frontier Research Center for Global Change (FRCGC) can capture both the ENSO and the biennial signals. Air-sea interactions in the tropical eastern-central Pacific are decoupled to eliminate the effects of ENSO in a experiment by SINTEX-F and the results show that biennial variability still exists even without ENSO. It seems to mean that the TBO and ENSO are independent from each other. Furthermore, the model results indicate that the two key regions are southwest Sumatra and the tropical western Pacific for the TBO cycle.展开更多
Several theories have been developed to explain tropical biennial oscillation (TBO), as an air-sea interactive system to impact Asian and global weather and climate, and some models have been established to produce ...Several theories have been developed to explain tropical biennial oscillation (TBO), as an air-sea interactive system to impact Asian and global weather and climate, and some models have been established to produce a TBO. A simple 5-box model, with almost all the key processes associated with TBO, can produce a TBO by including airsea interactions in the monsoon regions. Despite that, the South China Sea/western North Pacific summer monsoon (SCS/WNPSM), a very important monsoon subsystem, is neglected. In this paper, based on the dynamical framework of 5-box model, the term of SCS/WNPSM has been added and a 6-box model has been developed. Comparing the difference of TBO sensibilities with several key parameters, air-sea coupling coefficient α, SST-thermocline feedback coefficient γand wind-evaporation feedback coefficient λ, between the modified model and original model, TBO is more sensible to the parameters in the new model. The results imply that the eastern Pacific and local wind-evaporation play more important roles in the TBO when including SCS /WNPSM.展开更多
HALOE data from 1992 to 2003 are used to analyze the interannual variation of the HCl volume mixing ratio and its quasi-biennial oscillation (QBO) in the stratosphere, and the results are compared with the ozone QBO...HALOE data from 1992 to 2003 are used to analyze the interannual variation of the HCl volume mixing ratio and its quasi-biennial oscillation (QBO) in the stratosphere, and the results are compared with the ozone QBO. Then, the NCAR two-dimensional interactive chemical, dynamical and radiative model is used to study the effects of the wind QBO on the distribution and variation of HCl in the stratosphere. The results show that the QBO signals in the HCl mixing ratio are mainly at altitudes from 50 hPa to 5 hPa; the larger amplitudes are located between 30 hPa and 10 hPa; a higher HCl mixing ratio usually corresponds to the westerly phase of the wind QBO and a lower HCl mixing ratio usually corresponds to the easterly phase of the wind QBO in a level near 20 hPa and below. In the layer near 10 hPa-5 hPa, the phase of the HCl QBO reverses earlier than the phase of the wind QBO; the QBO signals for HCl in the extratropics are also clear, but with reversed phase compared with those over the Tropics. The HCl QBO signals at 30°N are clearer than those at 30°S; the QBOs for HCl and ozone have a similar phase at the 50 hPa-20 hPa level while they are out of phase near 10 hPa; the simulated structures of the HCl QBO agree well with observations. The mechanism for the formation of the HCl QBO and the reason for differences in the vertical structure of the HCl and ozone QBO are attributed to the transport of HCl and ozone by the wind QBO-induced meridional circulation.展开更多
The aim of the paper is to analyze a possible teleconnection of Quasi-Biennial Oscillation (QBO), Southern Oscillation (SO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) phenomena with longter...The aim of the paper is to analyze a possible teleconnection of Quasi-Biennial Oscillation (QBO), Southern Oscillation (SO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) phenomena with longterm streamflow fluctuation of the Bela River (1895-2004) and Cierny Hron River (1931-2004) (central Slovakia). Homogeneity, long-term trends, as well as inter-annual dry and wet cycles were analyzed for the entire 1895-2004 time series of the Bela River and for the 1931-2004 time series of the Cierny Hron River. Inter-annual fluctuation of the wet and dry periods was identified using spectral analysis. The most significant period is that of 3.6 years. Other significant periods are those of 2.35 years, 13.5 years, and 21 years. Since these periods were found in other rivers of the world, as well as in SO, NAO, and AO phenomena, they can be considered as relating to the general regularity of the Earth.展开更多
The observed tropospheric biennial oscillation (TBO) in the western North Pacific (WNP) monsoon region has an interdecadal variability with a period of 40-50 yr. That suggests a weaker effect of the TBO on the Eas...The observed tropospheric biennial oscillation (TBO) in the western North Pacific (WNP) monsoon region has an interdecadal variability with a period of 40-50 yr. That suggests a weaker effect of the TBO on the East Asia followed by a stronger one. A simple analytic model was designed to investigate the mechanism of the interdecadal variability of the TBO. The results indicated that a local TBO air-sea system not only supports the TBO variability in the WNP monsoon region but also produces an interdecadal variability of the TBO.展开更多
The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM...The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM)during 1958–2018.Covariability of the IIV and MEBR were identified for the two monsoons.When the MEBR was strong(weak),the IIV of the monsoon was observed to be large(small).This rule applied to both the ISM and WNPSM.Out-ofphase relationships were found between the ISM and the WNPSM.When the IIV and MEBR of the ISM were strong(weak),those of the WNPSM tended to be weak(strong).During the period with a stronger(weaker)ENSO–Atlantic coupling after(before)the mid-1980 s,the IIV and MEBR of the WNPSM(ISM)were observed to be stronger.The increasing influences from the tropical Atlantic sea surface temperature(SST)may trigger the observed seesaw pattern of the ISM and WNPSM in terms of the IIV and MEBR multidecadal variability.The results imply that tropical Atlantic SST may need to be given more attention and consideration when predicting future monsoon variability of the ISM and WNPSM.展开更多
The South China Sea summer monsoon (SCSSM) behaves with prominent climate variability from the in- traseasonal to interdecadal time scales. On the interannual time scale, the biennial variability (so-called troposp...The South China Sea summer monsoon (SCSSM) behaves with prominent climate variability from the in- traseasonal to interdecadal time scales. On the interannual time scale, the biennial variability (so-called tropospheric biennial oscillation, TBO) is as important as the E1 Nifio-Southem Oscillation (ENSO) period. Some observed data sets, including reanalysis data, are used to explore the associated air-sea interactive physical processes and how the SCSSM TBO affects the ENSO. The results show that the shearing vorticity induced by the north Indian Ocean sea surface temperature anomalies (SSTAs) and the anomalous Philip- pine Sea anticyclone both contribute to the TBO in the SCSSM. The results also indicate that the ENSO has a weak effect on the SCSSM TBO, whereas the latter affects the ENSO to some extent.展开更多
There is a rainfall variability biennial relationship between Central America (CA) and equatorial South America (ESA) over the tropical western hemisphere, which is known to have arisen due to the combined effects...There is a rainfall variability biennial relationship between Central America (CA) and equatorial South America (ESA) over the tropical western hemisphere, which is known to have arisen due to the combined effects of ENSO and tropical North Atlantic (TNA) SST. Here, the authors report that this biennial rainfall relationship between CA and ESA has weakened remarkably since 2000, with weakening in both in-phase and out-of-phase rainfall transitions. The observed decadal changes in the biennial relationship between CA and ESA rainfall can be attributed to changes in the effects of ENSO and TNA SST since 2000, which may be associated with more frequent occurrences of the central Pacific or'Modoki' type El Ni^o. The weakening of the association with ENSO for CA rainfall since 2000 might have given rise to the weakening of the in-phase rain transition from CA rainfall to the following ESA rainfall. The weakened linkage between boreal-winter ESA rainfall and the subsequent boreal-summer TNA SST since 2000 may have resulted in the weakening of the out- of-phase rainfall transition from boreal-winter ESA rainfall to the subsequent boreal-summer CA rainfall.展开更多
In this study, Artemisia biennis was seeded in a greenhouse and raised to an average plant height of 100 cm. Aboveground plant portions were harvested and partitioned into leaves and stems, and dried;while roots were ...In this study, Artemisia biennis was seeded in a greenhouse and raised to an average plant height of 100 cm. Aboveground plant portions were harvested and partitioned into leaves and stems, and dried;while roots were either removed from some soil (soil – roots) or left in soil (soil + roots). Greenhouse studies were conducted to evaluate the allelopathic potential of A. biennis leaves, roots, and stems;and soil – roots, and soil + roots on Solanum melanocerasum plant height and fresh weight plant–1. When 5 g of root and stem biomass were added to soil, S. melanocerasum plant height and fresh weight plant–1 was reduced by 75 and 88%, respectively. In contrast, 5 g of leaf biomass caused an increase in S. melanocerasum plant height and fresh weight plant–1 by 35% and 43%, respectively;whereas, 20 g of leaf biomass depressed both variables by 50% and 65%, also respectively. Plant height was more suppressed when S. melanocerasum grew in soil – roots as opposed to soil + roots, whereas fresh weight plant–1 was similar between soil treatments. S. melanocerasum plant height was reduced by 70 and 55% when grown in soil – roots and soil + roots, respectively. In contrast, S. melanocerasum fresh weight plant–1 was reduced by 76% in both soil treatments. The reduction in S. melanocerasum plant attributes in this study is indicative of the allelopathic potential of A. biennis. Furthermore, A. biennis allelopathy is differenttially expressed among plant parts, primarily in roots. This may explain how A. biennis is capable of dominating a habitat once it becomes established. The presence of extractable compounds with herbicidal activity could increase the potential usefulness of A. biennis.展开更多
Objective: The biennial epidemic pattern of respiratory syncytial virus (RSV) circulation in Croatia has been preserved and could not be related to climatic factors and the predominant RSV subtypes. The possibility th...Objective: The biennial epidemic pattern of respiratory syncytial virus (RSV) circulation in Croatia has been preserved and could not be related to climatic factors and the predominant RSV subtypes. The possibility that the circulation of different RSV genotypes affect the outbreak cycle in children in Croatia (Zagreb region) over a period of 3 consecutive years was explored in the paper. Methods: The study group consisted of inpatients, aged 0-10 years, who were hospi- talized with acute respiratory tract infections caused by RSV, in Zagreb, over the period from 1 January 2006 to 31 De- cember 2008. The virus was identified in the nasopharyngeal secretion using direct immunofluorescence method. The virus subtype and genotype was determined by real-time PCR and sequence analysis, respectively. Results: RSV infec- tions identified in 731 children. RSV subtype A caused 399 infections, and subtype B 332. Two subtype A genotypes (NA1 and GA5) and three subtype B genotypes (BA7, BA9 and BA10) were found. During persistent RSV biennial cycles namely four succeeding outbreaks, the new genotype from the previous smaller outbreak persevered into the up- coming larger outbreak. Conclusion: Our molecular-epidemiology study of RSV subtypes and genotypes during calen- dar months demonstrates that the biennial RSV cycle cannot be fully explained by the dynamic of the predominant cir- culating genotype of RSV. Other unknown factors account for the biennial cycle of RSV epidemics in Croatia.).展开更多
The quasi-biennial oscillation is the primary mode of variability of the equatorial mean zonal wind in the lower stratosphere, which is characterized by downward propagating easterly and westerly wind regimes from 10 ...The quasi-biennial oscillation is the primary mode of variability of the equatorial mean zonal wind in the lower stratosphere, which is characterized by downward propagating easterly and westerly wind regimes from 10 hPa level with a period approximately 28 months. The effects of the stratospheric quasi-biennial oscillation in zonal winds (SQBO) are not only confined to atmospheric dynamics but also seen in the chemical constituent (trace gases) anomalies such as ozone, water vapor, carbon monoxide and methane in the lower stratosphere. In this study, we examined the SQBO and associated ozone quasi-biennial oscillation (OQBO) using the chemistry-climate model CHASER (MIROC-ESM) simulations and ECMWF ERA-Interim ozone reanalysis for the period 2000-2015. We used lower stratospheric zonal wind from the radiosonde observations and total column ozone (TCO) from Aura Satellite (OMI Instruments) over Singapore to compare the SQBO and OQBO phases with model and reanalysis. The SQBO shows large variations in magnitude and periodicity during the period of study and the amplitude of OQBO also changes in accordance with the westerly (+ve ozone anomaly) and easterly (-ve ozone anomaly) phases of SQBO. During the Westerly phase of Ozone QBO (WQBO) corresponds to average positive total ozone anomaly of ~10 DU and in the Easterly phase of Ozone QBO (EQBO) corresponds to an average negative total ozone anomaly ~−10 DU in the tropical lower stratosphere. Since the SQBO phases were explained by the vertical propagations of Mixed-Ross by Gravity (MRG) waves and Kelvin waves, the correlation of ozone volume mixing ratio with zonal and vertical velocities gives quasi-biennial signals, which indicate the OQBO mechanism more related to dynamical transport than the stratospheric photochemical variations. Since the average amplitude of OQBO phases gives ~+/−10 DU from the observations during easterly and westerly phases SQBO, we need more research focused on the dynamical transport than the photochemical changes to understand the tropical ozone variability due to the ozone quasi-biennial oscillations.展开更多
The 7th Biennial Conference of Chinese Ecological Economics Society (CEES) was held from 5th to 7th, Nov.2006 in Qingdao University. The paper summarizes the major viewpoint presented at the conference: eco-economicre...The 7th Biennial Conference of Chinese Ecological Economics Society (CEES) was held from 5th to 7th, Nov.2006 in Qingdao University. The paper summarizes the major viewpoint presented at the conference: eco-economicresearch and construction of a harmonious society in China. The conference put forward that it is an objectivity andinevitability for human being to enter the harmonious society, that eco-economics is one of the theoretical bases for theconstruction of the harmonious society, and that the research of eco-economics in China should reflect new contentsdeveloped in the process of modernization in China and make proper contributions to the construction of the harmonioussociety.展开更多
The National Center for the Atmospheric Research(NCAR)middle atmospheric model is used to study the effects of the quasi-biennial oscillation in the stratosphere(QBO)on the tropopause and uppe troposphere,and the rela...The National Center for the Atmospheric Research(NCAR)middle atmospheric model is used to study the effects of the quasi-biennial oscillation in the stratosphere(QBO)on the tropopause and uppe troposphere,and the relationship between the QBO and South China Sea Summer Monsoon SCSSM is explored through NCEP(the National Centers for Environmental Prediction)/NCAR,ECMWF(Euro pean Centre for Medium-Range Weather Forecasts)monthly mean wind data and in situ sounding data The simulations show that the QBO-induced residual circulations propagate downwards,and affect the tropopause and upper troposphere during the periods of mid-late QBO phase and phase transition Meanwhile,diagnostic analyses indicate that anomalous circulation similar to SCSSM circulation is generated to strengthen the SCSSM during the easterly phase and anomalous Hadley-like circulation weakens the SCSSM during the westerly.Though the QBO has effects on the SCSSM by meridiona circulation,it is not a sole mechanism on the SCSSM TBO mode.展开更多
Study of the tropospheric biennial oscillation (TBO) has attracted significant interest since the 1980s.However,the mechanism that drives this process is still unclear.In the present study,ECMWF daily data were applie...Study of the tropospheric biennial oscillation (TBO) has attracted significant interest since the 1980s.However,the mechanism that drives this process is still unclear.In the present study,ECMWF daily data were applied to evaluate variation of the East Asian monsoon and its relationship to the TBO.First,the general East Asian monsoon index (EAMI) was delineated on the basis of a selected area using the 850 hPa u and v components.This new index may describe not only the characteristics of summer monsoons,but also the features of winter monsoons,which is crucial to understand the transition process between summer and winter monsoons.The following analysis of EAMI shows that there is a close relationship between summer and winter monsoons.In general,strong East Asian winter monsoons are followed by strong East Asian summer monsoons,and weak winter monsoons lead to weak summer monsoons.While strong (weak) summer monsoons followed by weak (strong) winter monsoons form a kind of 2-year cycle,which may be the possible mechanism leading to the TBO over the East Asian region.展开更多
On the basis of previous parameterization schemes, considering both the wave breaking and absorbed at critical level, a parameterization with a continuous spectrum of gravity waves is realized by introducing a momentu...On the basis of previous parameterization schemes, considering both the wave breaking and absorbed at critical level, a parameterization with a continuous spectrum of gravity waves is realized by introducing a momentum flux density function for the wave spectrum, and then the parameterization scheme of the gravity waves is improved. Choosing parameter values of the background atmosphere and waves based on the observations, a more realistic equatorial quasi-biennial oscillation (QBO) driven by the incorporated drag from the planetary and gravity waves can be simulated. The numerical results indicate that the forcing magnitude of the planetary and gravity waves varies with the wind field, and in some phases of the QBO, the contribution of the gravity waves is comparable with that of the planetary waves. After the QBO is steadily formed, its amplitude and period and wind configuration are relevant to the effect of vertical diffusion and the momentum flux distribution with spectrum, however, independent of the initial background wind field. Moreover, for any given nonzero initial background wind, a steady QBO can be finally generated due to the incorporated drag from the planetary and gravity waves.展开更多
The quasi-biennial oscillation (QBO) and semi-annual oscillation (SAO) characteristics of O3, NO2, and NO3 from 2002 to 2008 were analyzed using Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite observ...The quasi-biennial oscillation (QBO) and semi-annual oscillation (SAO) characteristics of O3, NO2, and NO3 from 2002 to 2008 were analyzed using Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite observations. From investigations of the vertical and latitudinal structures of interannual anomalies for O3 and the vertical velocity of the residual circulation (w-star), we conclude that dynamic transport is the principal factor controlling the QBO pattern of O3. Under the influence of vertical transport, the QBO signals of O3 originate in the middle stratosphere and propagate downward along with the wstar anomalies over the equator. The residual circulation has a significant role in tropical regions, regardless of altitude, while in extratropical regions, dynamic effects are important in some years in the lower stratosphere. In the middle stratosphere, dynamic transport is most efficient in the Southern Hemisphere. We also analyzed NO2 anomalies and found that their QBO pattern was deep and sta- tionary in the middle and upper stratosphere over the equator. This was due to the large depth over which w-star was anomalous. The latitudinal structure of NO2 was asymmetric in extratropical areas in the middle stratosphere, but in the upper layers, the QBO pattern and dynamic influences were only observed in tropical zones. The interannual anomalies of NO3 had an apparent SAO pattern in the tropical upper stratosphere because of different dynamic and chemical effects in different SAO phases. Chemical reactions may also have contributed to the QBO-type distribution of NO2 and the SAO-type distribution of NO3.展开更多
基金Scaling Project of the open foundation by Guangzhou Institute of Tropical Marine and Meteorology of China Meteorological Administration-"Preliminary study on interdecadal variability of TBO".
文摘There are obvious biennial phenomena of circulation, meteorological and climatic elements in the troposphere, named as Tropospheric (Quasi-) Biennial Oscillation (TBO). Many phenomena of TBO are discovered, such as variations of TBO in tropospheric temperature, pressure, winds field, monsoon and subtropical high etc. The mechanism of TBO is explored and the results demonstrate that tropical ocean (the Indian Ocean and the Pacific Ocean, mainly) and Stratospheric QBO play important roles in the TBO. In addition, Eurasian snow cover and solar activity of 11yr period can affect TBO very possibly.
文摘The inlcrunnual variation of the vertical distribution of ozone in the tropical stratosphere and its quasi—biennial oscillation (QBO) is analyzed using HALOE data. The results are compared with the wind QBO. A numerical experiment is carried out to study the effects of wind QBO on the distribution, and variation of ozone in the stratosphere by using (he NCAR interactive chemical, dynamical, and radiative two—dimensional model (SOCRATES). Data analysis shows that the location of the maximum ozone mixing ratio in the stratosphere changes in the meridional and vertical directions, and assumes a quasi—biennial period. The meridional and vertical motion of the maximum mixing ratio leads to a QBO of column ozone and its hemispheric asymmetry. The QBO of the location of the maximum is closely connected with the zonal wind QBO. The data analysis also shows that in the tropical region, the phase of the QBO for ozone density changes many times with height. Numerical simulation shows that the meridional circulation induced by the wind QBO includes three pairs of cells in the stratosphere, which have hemispheric symmetry. The transport of ozone by the induced meridional circulation in various latitudes and heights is the main dynamic cause for the ozone QBO. Cells of the induced circulation in the middle stratosphere (25-35 km) play an important role in producing the ozone QBO.
基金the National Natural Science Foundation of China (GrantNo. 40505019)
文摘In order to investigate the spatial patterns of the Tropospheric Biennial Oscillation (TBO) on the global scale, the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) monthly averaged precipitation and the Climate Diagnostics Center (CDC) monthly outgoing long-wave radiation (OLR) and SST are used in conjunction with TBO bandpass-filtering. The results indicate active biennial variability in the tropical eastern-central Pacific regions. It is evident that observations reflect the biennial component of the ENSO rather than the TBO itself. Since some studies have pointed out that the TBO is a broad-scale phenomenon differing from the ENSO, to investigate the pure TBO the ENSO signal must be excluded. The Scale Interaction Experiment-FRCGC (SINTEX-F) coupled general circulation model (CGCM) developed at Japan Frontier Research Center for Global Change (FRCGC) can capture both the ENSO and the biennial signals. Air-sea interactions in the tropical eastern-central Pacific are decoupled to eliminate the effects of ENSO in a experiment by SINTEX-F and the results show that biennial variability still exists even without ENSO. It seems to mean that the TBO and ENSO are independent from each other. Furthermore, the model results indicate that the two key regions are southwest Sumatra and the tropical western Pacific for the TBO cycle.
基金Project supported by the National Natural Science Foundation of China (Grant No 40505019) and the 0pen Research Fund of Laboratory of China Meteorological Administration (Grant No CMATG2006L03).
文摘Several theories have been developed to explain tropical biennial oscillation (TBO), as an air-sea interactive system to impact Asian and global weather and climate, and some models have been established to produce a TBO. A simple 5-box model, with almost all the key processes associated with TBO, can produce a TBO by including airsea interactions in the monsoon regions. Despite that, the South China Sea/western North Pacific summer monsoon (SCS/WNPSM), a very important monsoon subsystem, is neglected. In this paper, based on the dynamical framework of 5-box model, the term of SCS/WNPSM has been added and a 6-box model has been developed. Comparing the difference of TBO sensibilities with several key parameters, air-sea coupling coefficient α, SST-thermocline feedback coefficient γand wind-evaporation feedback coefficient λ, between the modified model and original model, TBO is more sensible to the parameters in the new model. The results imply that the eastern Pacific and local wind-evaporation play more important roles in the TBO when including SCS /WNPSM.
基金This work was supported by the National Natural Science Foundation of China(Grant No.40375012)
文摘HALOE data from 1992 to 2003 are used to analyze the interannual variation of the HCl volume mixing ratio and its quasi-biennial oscillation (QBO) in the stratosphere, and the results are compared with the ozone QBO. Then, the NCAR two-dimensional interactive chemical, dynamical and radiative model is used to study the effects of the wind QBO on the distribution and variation of HCl in the stratosphere. The results show that the QBO signals in the HCl mixing ratio are mainly at altitudes from 50 hPa to 5 hPa; the larger amplitudes are located between 30 hPa and 10 hPa; a higher HCl mixing ratio usually corresponds to the westerly phase of the wind QBO and a lower HCl mixing ratio usually corresponds to the easterly phase of the wind QBO in a level near 20 hPa and below. In the layer near 10 hPa-5 hPa, the phase of the HCl QBO reverses earlier than the phase of the wind QBO; the QBO signals for HCl in the extratropics are also clear, but with reversed phase compared with those over the Tropics. The HCl QBO signals at 30°N are clearer than those at 30°S; the QBOs for HCl and ozone have a similar phase at the 50 hPa-20 hPa level while they are out of phase near 10 hPa; the simulated structures of the HCl QBO agree well with observations. The mechanism for the formation of the HCl QBO and the reason for differences in the vertical structure of the HCl and ozone QBO are attributed to the transport of HCl and ozone by the wind QBO-induced meridional circulation.
文摘The aim of the paper is to analyze a possible teleconnection of Quasi-Biennial Oscillation (QBO), Southern Oscillation (SO), North Atlantic Oscillation (NAO), and Arctic Oscillation (AO) phenomena with longterm streamflow fluctuation of the Bela River (1895-2004) and Cierny Hron River (1931-2004) (central Slovakia). Homogeneity, long-term trends, as well as inter-annual dry and wet cycles were analyzed for the entire 1895-2004 time series of the Bela River and for the 1931-2004 time series of the Cierny Hron River. Inter-annual fluctuation of the wet and dry periods was identified using spectral analysis. The most significant period is that of 3.6 years. Other significant periods are those of 2.35 years, 13.5 years, and 21 years. Since these periods were found in other rivers of the world, as well as in SO, NAO, and AO phenomena, they can be considered as relating to the general regularity of the Earth.
基金supported by the National Natural Science Foundation of China (Grant No 40505019)
文摘The observed tropospheric biennial oscillation (TBO) in the western North Pacific (WNP) monsoon region has an interdecadal variability with a period of 40-50 yr. That suggests a weaker effect of the TBO on the East Asia followed by a stronger one. A simple analytic model was designed to investigate the mechanism of the interdecadal variability of the TBO. The results indicated that a local TBO air-sea system not only supports the TBO variability in the WNP monsoon region but also produces an interdecadal variability of the TBO.
基金supported by the National Natural Science Foundation of China grant number 41776031the National Key Research and Development Program of China grant number 2018YFC1506903+2 种基金the Guangdong Natural Science Foundation grant number 2015A030313796the program for scientific research start-up funds of Guangdong Ocean Universitythe Foundation for Returned Scholars of the Ministry of Education of China。
文摘The intensity of interannual variability(IIV)of the monsoon and monsoon–ENSO biennial relationship(MEBR)were examined and compared for both the Indian summer monsoon(ISM)and western North Pacific summer monsoon(WNPSM)during 1958–2018.Covariability of the IIV and MEBR were identified for the two monsoons.When the MEBR was strong(weak),the IIV of the monsoon was observed to be large(small).This rule applied to both the ISM and WNPSM.Out-ofphase relationships were found between the ISM and the WNPSM.When the IIV and MEBR of the ISM were strong(weak),those of the WNPSM tended to be weak(strong).During the period with a stronger(weaker)ENSO–Atlantic coupling after(before)the mid-1980 s,the IIV and MEBR of the WNPSM(ISM)were observed to be stronger.The increasing influences from the tropical Atlantic sea surface temperature(SST)may trigger the observed seesaw pattern of the ISM and WNPSM in terms of the IIV and MEBR multidecadal variability.The results imply that tropical Atlantic SST may need to be given more attention and consideration when predicting future monsoon variability of the ISM and WNPSM.
基金The Major State Basic Research Development Program(973Program)of China under contract No.2011CB403403)
文摘The South China Sea summer monsoon (SCSSM) behaves with prominent climate variability from the in- traseasonal to interdecadal time scales. On the interannual time scale, the biennial variability (so-called tropospheric biennial oscillation, TBO) is as important as the E1 Nifio-Southem Oscillation (ENSO) period. Some observed data sets, including reanalysis data, are used to explore the associated air-sea interactive physical processes and how the SCSSM TBO affects the ENSO. The results show that the shearing vorticity induced by the north Indian Ocean sea surface temperature anomalies (SSTAs) and the anomalous Philip- pine Sea anticyclone both contribute to the TBO in the SCSSM. The results also indicate that the ENSO has a weak effect on the SCSSM TBO, whereas the latter affects the ENSO to some extent.
基金funded by the National Natural Science Foundation of China[grant number 41776031]the Guangdong Natural Science Foundation[grant number 2015A030313796]+3 种基金the National Program on Global Change and Air-Sea Interaction[grant number GASI-IPOVAI-04]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010104]the program for scientific research start-upfunds of Guangdong Ocean Universitythe Foundation for Returned Scholars of the Ministry of Education of China
文摘There is a rainfall variability biennial relationship between Central America (CA) and equatorial South America (ESA) over the tropical western hemisphere, which is known to have arisen due to the combined effects of ENSO and tropical North Atlantic (TNA) SST. Here, the authors report that this biennial rainfall relationship between CA and ESA has weakened remarkably since 2000, with weakening in both in-phase and out-of-phase rainfall transitions. The observed decadal changes in the biennial relationship between CA and ESA rainfall can be attributed to changes in the effects of ENSO and TNA SST since 2000, which may be associated with more frequent occurrences of the central Pacific or'Modoki' type El Ni^o. The weakening of the association with ENSO for CA rainfall since 2000 might have given rise to the weakening of the in-phase rain transition from CA rainfall to the following ESA rainfall. The weakened linkage between boreal-winter ESA rainfall and the subsequent boreal-summer TNA SST since 2000 may have resulted in the weakening of the out- of-phase rainfall transition from boreal-winter ESA rainfall to the subsequent boreal-summer CA rainfall.
文摘In this study, Artemisia biennis was seeded in a greenhouse and raised to an average plant height of 100 cm. Aboveground plant portions were harvested and partitioned into leaves and stems, and dried;while roots were either removed from some soil (soil – roots) or left in soil (soil + roots). Greenhouse studies were conducted to evaluate the allelopathic potential of A. biennis leaves, roots, and stems;and soil – roots, and soil + roots on Solanum melanocerasum plant height and fresh weight plant–1. When 5 g of root and stem biomass were added to soil, S. melanocerasum plant height and fresh weight plant–1 was reduced by 75 and 88%, respectively. In contrast, 5 g of leaf biomass caused an increase in S. melanocerasum plant height and fresh weight plant–1 by 35% and 43%, respectively;whereas, 20 g of leaf biomass depressed both variables by 50% and 65%, also respectively. Plant height was more suppressed when S. melanocerasum grew in soil – roots as opposed to soil + roots, whereas fresh weight plant–1 was similar between soil treatments. S. melanocerasum plant height was reduced by 70 and 55% when grown in soil – roots and soil + roots, respectively. In contrast, S. melanocerasum fresh weight plant–1 was reduced by 76% in both soil treatments. The reduction in S. melanocerasum plant attributes in this study is indicative of the allelopathic potential of A. biennis. Furthermore, A. biennis allelopathy is differenttially expressed among plant parts, primarily in roots. This may explain how A. biennis is capable of dominating a habitat once it becomes established. The presence of extractable compounds with herbicidal activity could increase the potential usefulness of A. biennis.
文摘Objective: The biennial epidemic pattern of respiratory syncytial virus (RSV) circulation in Croatia has been preserved and could not be related to climatic factors and the predominant RSV subtypes. The possibility that the circulation of different RSV genotypes affect the outbreak cycle in children in Croatia (Zagreb region) over a period of 3 consecutive years was explored in the paper. Methods: The study group consisted of inpatients, aged 0-10 years, who were hospi- talized with acute respiratory tract infections caused by RSV, in Zagreb, over the period from 1 January 2006 to 31 De- cember 2008. The virus was identified in the nasopharyngeal secretion using direct immunofluorescence method. The virus subtype and genotype was determined by real-time PCR and sequence analysis, respectively. Results: RSV infec- tions identified in 731 children. RSV subtype A caused 399 infections, and subtype B 332. Two subtype A genotypes (NA1 and GA5) and three subtype B genotypes (BA7, BA9 and BA10) were found. During persistent RSV biennial cycles namely four succeeding outbreaks, the new genotype from the previous smaller outbreak persevered into the up- coming larger outbreak. Conclusion: Our molecular-epidemiology study of RSV subtypes and genotypes during calen- dar months demonstrates that the biennial RSV cycle cannot be fully explained by the dynamic of the predominant cir- culating genotype of RSV. Other unknown factors account for the biennial cycle of RSV epidemics in Croatia.).
文摘The quasi-biennial oscillation is the primary mode of variability of the equatorial mean zonal wind in the lower stratosphere, which is characterized by downward propagating easterly and westerly wind regimes from 10 hPa level with a period approximately 28 months. The effects of the stratospheric quasi-biennial oscillation in zonal winds (SQBO) are not only confined to atmospheric dynamics but also seen in the chemical constituent (trace gases) anomalies such as ozone, water vapor, carbon monoxide and methane in the lower stratosphere. In this study, we examined the SQBO and associated ozone quasi-biennial oscillation (OQBO) using the chemistry-climate model CHASER (MIROC-ESM) simulations and ECMWF ERA-Interim ozone reanalysis for the period 2000-2015. We used lower stratospheric zonal wind from the radiosonde observations and total column ozone (TCO) from Aura Satellite (OMI Instruments) over Singapore to compare the SQBO and OQBO phases with model and reanalysis. The SQBO shows large variations in magnitude and periodicity during the period of study and the amplitude of OQBO also changes in accordance with the westerly (+ve ozone anomaly) and easterly (-ve ozone anomaly) phases of SQBO. During the Westerly phase of Ozone QBO (WQBO) corresponds to average positive total ozone anomaly of ~10 DU and in the Easterly phase of Ozone QBO (EQBO) corresponds to an average negative total ozone anomaly ~−10 DU in the tropical lower stratosphere. Since the SQBO phases were explained by the vertical propagations of Mixed-Ross by Gravity (MRG) waves and Kelvin waves, the correlation of ozone volume mixing ratio with zonal and vertical velocities gives quasi-biennial signals, which indicate the OQBO mechanism more related to dynamical transport than the stratospheric photochemical variations. Since the average amplitude of OQBO phases gives ~+/−10 DU from the observations during easterly and westerly phases SQBO, we need more research focused on the dynamical transport than the photochemical changes to understand the tropical ozone variability due to the ozone quasi-biennial oscillations.
文摘The 7th Biennial Conference of Chinese Ecological Economics Society (CEES) was held from 5th to 7th, Nov.2006 in Qingdao University. The paper summarizes the major viewpoint presented at the conference: eco-economicresearch and construction of a harmonious society in China. The conference put forward that it is an objectivity andinevitability for human being to enter the harmonious society, that eco-economics is one of the theoretical bases for theconstruction of the harmonious society, and that the research of eco-economics in China should reflect new contentsdeveloped in the process of modernization in China and make proper contributions to the construction of the harmonioussociety.
基金supported by the National Natural Science Foundation of China[grant numbers 41975048,42030605,and 42175069]the Natural Science Foundation of Jiangsu Province[grant number BK20191404]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA17010105].
基金Supported by the National Natural Science Foundation of China(Grant No.40505019)
文摘The National Center for the Atmospheric Research(NCAR)middle atmospheric model is used to study the effects of the quasi-biennial oscillation in the stratosphere(QBO)on the tropopause and uppe troposphere,and the relationship between the QBO and South China Sea Summer Monsoon SCSSM is explored through NCEP(the National Centers for Environmental Prediction)/NCAR,ECMWF(Euro pean Centre for Medium-Range Weather Forecasts)monthly mean wind data and in situ sounding data The simulations show that the QBO-induced residual circulations propagate downwards,and affect the tropopause and upper troposphere during the periods of mid-late QBO phase and phase transition Meanwhile,diagnostic analyses indicate that anomalous circulation similar to SCSSM circulation is generated to strengthen the SCSSM during the easterly phase and anomalous Hadley-like circulation weakens the SCSSM during the westerly.Though the QBO has effects on the SCSSM by meridiona circulation,it is not a sole mechanism on the SCSSM TBO mode.
基金supported by the National Natural Science Foundation of China (U0833602)the National Basic Research Program of China(2007CB411805 and 2010CB950400)
文摘Study of the tropospheric biennial oscillation (TBO) has attracted significant interest since the 1980s.However,the mechanism that drives this process is still unclear.In the present study,ECMWF daily data were applied to evaluate variation of the East Asian monsoon and its relationship to the TBO.First,the general East Asian monsoon index (EAMI) was delineated on the basis of a selected area using the 850 hPa u and v components.This new index may describe not only the characteristics of summer monsoons,but also the features of winter monsoons,which is crucial to understand the transition process between summer and winter monsoons.The following analysis of EAMI shows that there is a close relationship between summer and winter monsoons.In general,strong East Asian winter monsoons are followed by strong East Asian summer monsoons,and weak winter monsoons lead to weak summer monsoons.While strong (weak) summer monsoons followed by weak (strong) winter monsoons form a kind of 2-year cycle,which may be the possible mechanism leading to the TBO over the East Asian region.
基金Supported by National Natural Science Foundation of China (Grant Nos. 40731055 and 40774085)the Innovative Research Team Project, Ministry of Education, the Knowledge Innovation Program of the Chinese Academy of Sciences (IAP07315)+1 种基金the China Meteorological Administration (Grant No. GYHY200706013)the Open Programs of Key Laboratory of Geospace Environment and Geodesy, Ministry of Education
文摘On the basis of previous parameterization schemes, considering both the wave breaking and absorbed at critical level, a parameterization with a continuous spectrum of gravity waves is realized by introducing a momentum flux density function for the wave spectrum, and then the parameterization scheme of the gravity waves is improved. Choosing parameter values of the background atmosphere and waves based on the observations, a more realistic equatorial quasi-biennial oscillation (QBO) driven by the incorporated drag from the planetary and gravity waves can be simulated. The numerical results indicate that the forcing magnitude of the planetary and gravity waves varies with the wind field, and in some phases of the QBO, the contribution of the gravity waves is comparable with that of the planetary waves. After the QBO is steadily formed, its amplitude and period and wind configuration are relevant to the effect of vertical diffusion and the momentum flux distribution with spectrum, however, independent of the initial background wind field. Moreover, for any given nonzero initial background wind, a steady QBO can be finally generated due to the incorporated drag from the planetary and gravity waves.
基金supported by the National Basic Research Program of China (2010CB428604)Dragon 2 Program (ID:5311)+1 种基金the National Natural Science Foundation of China (40633015)The meteorological analysis was kindly provided by ECMWF
文摘The quasi-biennial oscillation (QBO) and semi-annual oscillation (SAO) characteristics of O3, NO2, and NO3 from 2002 to 2008 were analyzed using Global Ozone Monitoring by Occultation of Stars (GOMOS) satellite observations. From investigations of the vertical and latitudinal structures of interannual anomalies for O3 and the vertical velocity of the residual circulation (w-star), we conclude that dynamic transport is the principal factor controlling the QBO pattern of O3. Under the influence of vertical transport, the QBO signals of O3 originate in the middle stratosphere and propagate downward along with the wstar anomalies over the equator. The residual circulation has a significant role in tropical regions, regardless of altitude, while in extratropical regions, dynamic effects are important in some years in the lower stratosphere. In the middle stratosphere, dynamic transport is most efficient in the Southern Hemisphere. We also analyzed NO2 anomalies and found that their QBO pattern was deep and sta- tionary in the middle and upper stratosphere over the equator. This was due to the large depth over which w-star was anomalous. The latitudinal structure of NO2 was asymmetric in extratropical areas in the middle stratosphere, but in the upper layers, the QBO pattern and dynamic influences were only observed in tropical zones. The interannual anomalies of NO3 had an apparent SAO pattern in the tropical upper stratosphere because of different dynamic and chemical effects in different SAO phases. Chemical reactions may also have contributed to the QBO-type distribution of NO2 and the SAO-type distribution of NO3.