<strong>Rationale: </strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Acute respiratory failur...<strong>Rationale: </strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Acute respiratory failure is an uncommon complication of pregnancy. However, it is the most frequent organ dysfunction associated with obstetric admissions to an intensive care unit. The obstetric population is a different group due to its physiology and the presence of the fetus that lacks evidence in the literature within the subject of ventilatory support. Noninvasive positive pressure ventilation (NIPPV) is often avoided due to the lack of knowledge on the safety and efficacy of this modality. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Currently,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> there are no guidelines for the management of respiratory failure in pregnancy. </span><b><span style="font-family:Verdana;">Objectives: </span></b><span style="font-family:Verdana;">To provide evidence in support of the use of NIPPV as a safe and reasonable modality for pregnant patients with respiratory failure. </span><b><span style="font-family:Verdana;">Methods: </span></b><span style="font-family:Verdana;">We retrospectively reviewed medical records of 29 pregnant patients of the Obstetric Critical Care Unit of a tertiary hospital in Panamá City who received NIPPV from 2013 to 2015. Failure to response was defined as the lack of increase in the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio or clinical deterioration 6 hours after initiating NIPPV. Demographics, indication for NIPPV, duration of treatment, as well as maternal and fetal outcomes were collected. </span><b><span style="font-family:Verdana;">Measurements</span></b> <b><span style="font-family:Verdana;">and</span></b> <b><span style="font-family:Verdana;">Main</span></b> <b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">Mean age was 28.4 ± 6 years, mean body mass index 27.4 ± 3.3, and mean gestational age at admission was 30</span><sup><span style="font-family:Verdana;">5/7</span></sup><span style="font-family:Verdana;"> ± 5 weeks. Twenty-four patients (82.8%) met the criteria for acute lung injury (ALI) and an additional two (6.9%) for acute respiratory distress syndrome (ARDS). The mean duration of ventilation was 50.6 ± 17.27 hours. Statistically significant differences were noted between the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratios in failure and successful patients within 2 hours of NIPPV therapy (P = 0.007) and </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio within 6 hours of NIPPV therapy (P = 0.03). Success was defined when the patient was administered NIPPV, resulting in an improvement (increase in </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">p</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">a/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio) of her ventilatory parameters. Three patients (10.3%) failed to respond to NIPPV and needed to be converted to invasive mechanical ventilation. Patients who required intubation had a longer duration of ICU stay (P = 0.006) and overall hospital stay (P = 0.03). None of patients presented aspiration during NIPPV therapy. </span><b><span style="font-family:Verdana;">Conclusion: </span></b><span style="font-family:Verdana;">The current series is the largest report of pregnant patients requiring ventilatory support who received NIPPV as first line of therapy. This report shows the usefulness of this ventilation modality, avoiding intubation with its risks, of a significant number of patients, especially ventilator-associated pneumonia.</span></span></span></span>展开更多
Objective: Research was conducted to examine benefits to using non-invasive ventilation (NIV) or continuous positive airway pressure (CPAP) early in the treatment of respiratory distress caused by pulmonary edema, chr...Objective: Research was conducted to examine benefits to using non-invasive ventilation (NIV) or continuous positive airway pressure (CPAP) early in the treatment of respiratory distress caused by pulmonary edema, chronic obstructive pulmonary disease (COPD) and asthma. Limitations to successful NIV and CPAP therapy were evaluated to determine how prolonged initiation of treatment may lead to hypoxemia (decreased oxygen in the blood) and hypercapnia (increased carbon dioxide in the blood) resulting in poor outcomes. Method: Reviews of literature from nursing and allied health data bases (CINAHL and ProQuest) with terms pulmonary edema, positive pressure device and non-invasive ventilation from 2010 to 2014 were used. Studies were conducted in the hospital and prehospital settings. Results: The literature search located 7 articles from CINAHL and 25 articles from ProQuest. A total of 6 of these articles were analyzed. Additional sources of data were obtained from Ignatavicius and Workman (2013) Medical-Surgical Nursing Patient-Centered Collaborative Care 7th edition and American Journal of Nursing (02/2013) Volume 113: 2. Conclusion: All of the articles concluded that early initiation of continuous positive airway pressure ventilations in the short-term was beneficial;however, late initiation of therapy required additional interventions. The studies indicated that early use of positive airway pressure in acute respiratory distress improved breath rate, heart rate and blood pressure. The use of positive airway pressure for respiratory distress may decrease the need for endotracheal intubation.展开更多
Background The evidence for non-invasive positive pressure ventilation (NIPPV) used in patients with severe stable chronic obstructive pulmonary disease (COPD) is insufficient. The aim of the meta-analysis was to ...Background The evidence for non-invasive positive pressure ventilation (NIPPV) used in patients with severe stable chronic obstructive pulmonary disease (COPD) is insufficient. The aim of the meta-analysis was to assess the treatment effects of long-term NIPPV on gas change, lung function, health-related quality of life (HRQL), survival and mortality in severe stable COPD patients. Methods Randomized controlled trials (RCTs) and crossover studies comparing the treatment effects of NIPPV with conventional therapy were identified from electronic databases and reference lists from January 1995 to August 2010. Two reviewers independently assessed study quality. Data were combined using Review Manager 5.0. Both pooled effects and 95% confidence intervals were calculated. Results Five RCTs and one randomized crossover study with a total of 383 severe stable COPD patients were included NIPPV improved gas change significantly when using a higher inspiratory positive airway pressures. The weighted mean difference (WMD) for the partial pressure of carbon dioxide in artery (PaCO2) was -3.52 (-5.26, -1.77) mmHg and for the partial pressure of oxygen in artery (PaO2) 2.84 (0.23, 5.44) mmHg. There were significant improvements in dyspnea and sleep quality, but gained no benefits on lung function. The standardized mean difference (SMD) for the forced expiratory volume in 1 second (FEV1) was 0.00 (0.29, 0.29). And the benefits for exercise tolerance, mood, survival and mortality remained unclear. Conclusions Patients with severe stable COPD can gain some substantial treatment benefits when using NIPPV, especially improvements in gas change, dyspnea and sleep quality. Studies of high methodological quality with large population, especially those based on a higher inspiratory positive airway pressures are required to provide more evidences.展开更多
AIM To characterize the clinical course and outcomes of nasal intermittent mandatory ventilation(NIMV) use in acute pediatric respiratory failure.METHODS We identified all patients treated with NIMV in the pediatric i...AIM To characterize the clinical course and outcomes of nasal intermittent mandatory ventilation(NIMV) use in acute pediatric respiratory failure.METHODS We identified all patients treated with NIMV in the pediatric intensive care unit(PICU) or inpatient general pediatrics between January 2013 and December 2015 at two academic centers.Patients who utilized NIMV with other modes of noninvasive ventilation during the same admission were included.Data included demographics,vital signs on admission and prior to initiation of NIMV,pediatric risk of mortality Ⅲ(PRIsM-Ⅲ) scores,complications,respiratory support characteristics,PICU and hospital length of stays,duration of respiratory support,and complications.Patients who did not require escalation to mechanical ventilation were defined as NIMV responders;those who required escalation to mechanical ventilation(MV) were defined as NIMV nonresponders.NIMV responders were compared to NIMV non-responders.RESULTS Forty-two patients met study criteria.six(14%) failed treatment and required MV.The majority of the patients(74%) had a primary diagnosis of bronchiolitis.The median age of these 42 patients was 4 mo(range 0.5-28.1 mo,IQR 7,P = 0.69).No significant difference was measured in other baseline demographics and vitals on initiation of NIMV;these included age,temperature,respiratory rate,O2 saturation,heart rate,systolic blood pressure,diastolic blood pressure,and PRIsM-Ⅲ scores.The duration of NIMV was shorter in the NIMV nonresponder vs NIMV responder group(6.5 h vs 65 h,P < 0.0005).Otherwise,NIMV failure was not associated with significant differences in PICU length of stay(LOs),hospital LOs,or total duration of respiratory support.No patients had aspiration pneumonia,pneumothorax,or skin breakdown.CONCLUSION Most of our patients responded to NIMV.NIMV failure is not associated with differences in hospital LOs,PICU LOs,or duration of respiratory support.展开更多
文摘<strong>Rationale: </strong><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Acute respiratory failure is an uncommon complication of pregnancy. However, it is the most frequent organ dysfunction associated with obstetric admissions to an intensive care unit. The obstetric population is a different group due to its physiology and the presence of the fetus that lacks evidence in the literature within the subject of ventilatory support. Noninvasive positive pressure ventilation (NIPPV) is often avoided due to the lack of knowledge on the safety and efficacy of this modality. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Currently,</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;"> there are no guidelines for the management of respiratory failure in pregnancy. </span><b><span style="font-family:Verdana;">Objectives: </span></b><span style="font-family:Verdana;">To provide evidence in support of the use of NIPPV as a safe and reasonable modality for pregnant patients with respiratory failure. </span><b><span style="font-family:Verdana;">Methods: </span></b><span style="font-family:Verdana;">We retrospectively reviewed medical records of 29 pregnant patients of the Obstetric Critical Care Unit of a tertiary hospital in Panamá City who received NIPPV from 2013 to 2015. Failure to response was defined as the lack of increase in the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio or clinical deterioration 6 hours after initiating NIPPV. Demographics, indication for NIPPV, duration of treatment, as well as maternal and fetal outcomes were collected. </span><b><span style="font-family:Verdana;">Measurements</span></b> <b><span style="font-family:Verdana;">and</span></b> <b><span style="font-family:Verdana;">Main</span></b> <b><span style="font-family:Verdana;">Results: </span></b><span style="font-family:Verdana;">Mean age was 28.4 ± 6 years, mean body mass index 27.4 ± 3.3, and mean gestational age at admission was 30</span><sup><span style="font-family:Verdana;">5/7</span></sup><span style="font-family:Verdana;"> ± 5 weeks. Twenty-four patients (82.8%) met the criteria for acute lung injury (ALI) and an additional two (6.9%) for acute respiratory distress syndrome (ARDS). The mean duration of ventilation was 50.6 ± 17.27 hours. Statistically significant differences were noted between the </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratios in failure and successful patients within 2 hours of NIPPV therapy (P = 0.007) and </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">pa</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">O</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio within 6 hours of NIPPV therapy (P = 0.03). Success was defined when the patient was administered NIPPV, resulting in an improvement (increase in </span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">p</span></span></span><span><span><span style="font-family:""><span style="font-family:Verdana;">a/FiO</span><sub><span style="font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> ratio) of her ventilatory parameters. Three patients (10.3%) failed to respond to NIPPV and needed to be converted to invasive mechanical ventilation. Patients who required intubation had a longer duration of ICU stay (P = 0.006) and overall hospital stay (P = 0.03). None of patients presented aspiration during NIPPV therapy. </span><b><span style="font-family:Verdana;">Conclusion: </span></b><span style="font-family:Verdana;">The current series is the largest report of pregnant patients requiring ventilatory support who received NIPPV as first line of therapy. This report shows the usefulness of this ventilation modality, avoiding intubation with its risks, of a significant number of patients, especially ventilator-associated pneumonia.</span></span></span></span>
文摘Objective: Research was conducted to examine benefits to using non-invasive ventilation (NIV) or continuous positive airway pressure (CPAP) early in the treatment of respiratory distress caused by pulmonary edema, chronic obstructive pulmonary disease (COPD) and asthma. Limitations to successful NIV and CPAP therapy were evaluated to determine how prolonged initiation of treatment may lead to hypoxemia (decreased oxygen in the blood) and hypercapnia (increased carbon dioxide in the blood) resulting in poor outcomes. Method: Reviews of literature from nursing and allied health data bases (CINAHL and ProQuest) with terms pulmonary edema, positive pressure device and non-invasive ventilation from 2010 to 2014 were used. Studies were conducted in the hospital and prehospital settings. Results: The literature search located 7 articles from CINAHL and 25 articles from ProQuest. A total of 6 of these articles were analyzed. Additional sources of data were obtained from Ignatavicius and Workman (2013) Medical-Surgical Nursing Patient-Centered Collaborative Care 7th edition and American Journal of Nursing (02/2013) Volume 113: 2. Conclusion: All of the articles concluded that early initiation of continuous positive airway pressure ventilations in the short-term was beneficial;however, late initiation of therapy required additional interventions. The studies indicated that early use of positive airway pressure in acute respiratory distress improved breath rate, heart rate and blood pressure. The use of positive airway pressure for respiratory distress may decrease the need for endotracheal intubation.
文摘Background The evidence for non-invasive positive pressure ventilation (NIPPV) used in patients with severe stable chronic obstructive pulmonary disease (COPD) is insufficient. The aim of the meta-analysis was to assess the treatment effects of long-term NIPPV on gas change, lung function, health-related quality of life (HRQL), survival and mortality in severe stable COPD patients. Methods Randomized controlled trials (RCTs) and crossover studies comparing the treatment effects of NIPPV with conventional therapy were identified from electronic databases and reference lists from January 1995 to August 2010. Two reviewers independently assessed study quality. Data were combined using Review Manager 5.0. Both pooled effects and 95% confidence intervals were calculated. Results Five RCTs and one randomized crossover study with a total of 383 severe stable COPD patients were included NIPPV improved gas change significantly when using a higher inspiratory positive airway pressures. The weighted mean difference (WMD) for the partial pressure of carbon dioxide in artery (PaCO2) was -3.52 (-5.26, -1.77) mmHg and for the partial pressure of oxygen in artery (PaO2) 2.84 (0.23, 5.44) mmHg. There were significant improvements in dyspnea and sleep quality, but gained no benefits on lung function. The standardized mean difference (SMD) for the forced expiratory volume in 1 second (FEV1) was 0.00 (0.29, 0.29). And the benefits for exercise tolerance, mood, survival and mortality remained unclear. Conclusions Patients with severe stable COPD can gain some substantial treatment benefits when using NIPPV, especially improvements in gas change, dyspnea and sleep quality. Studies of high methodological quality with large population, especially those based on a higher inspiratory positive airway pressures are required to provide more evidences.
基金supported by NIH National Center for Advancing Translational Science,No.UL1TR001881
文摘AIM To characterize the clinical course and outcomes of nasal intermittent mandatory ventilation(NIMV) use in acute pediatric respiratory failure.METHODS We identified all patients treated with NIMV in the pediatric intensive care unit(PICU) or inpatient general pediatrics between January 2013 and December 2015 at two academic centers.Patients who utilized NIMV with other modes of noninvasive ventilation during the same admission were included.Data included demographics,vital signs on admission and prior to initiation of NIMV,pediatric risk of mortality Ⅲ(PRIsM-Ⅲ) scores,complications,respiratory support characteristics,PICU and hospital length of stays,duration of respiratory support,and complications.Patients who did not require escalation to mechanical ventilation were defined as NIMV responders;those who required escalation to mechanical ventilation(MV) were defined as NIMV nonresponders.NIMV responders were compared to NIMV non-responders.RESULTS Forty-two patients met study criteria.six(14%) failed treatment and required MV.The majority of the patients(74%) had a primary diagnosis of bronchiolitis.The median age of these 42 patients was 4 mo(range 0.5-28.1 mo,IQR 7,P = 0.69).No significant difference was measured in other baseline demographics and vitals on initiation of NIMV;these included age,temperature,respiratory rate,O2 saturation,heart rate,systolic blood pressure,diastolic blood pressure,and PRIsM-Ⅲ scores.The duration of NIMV was shorter in the NIMV nonresponder vs NIMV responder group(6.5 h vs 65 h,P < 0.0005).Otherwise,NIMV failure was not associated with significant differences in PICU length of stay(LOs),hospital LOs,or total duration of respiratory support.No patients had aspiration pneumonia,pneumothorax,or skin breakdown.CONCLUSION Most of our patients responded to NIMV.NIMV failure is not associated with differences in hospital LOs,PICU LOs,or duration of respiratory support.