Owing to the advantages of high operating voltage,environmental benignity,and low cost,potassium-based dual-ion batteries(KDIBs)have been considered as a potential candidate for large-scale energy storage.However,KDIB...Owing to the advantages of high operating voltage,environmental benignity,and low cost,potassium-based dual-ion batteries(KDIBs)have been considered as a potential candidate for large-scale energy storage.However,KDIBs generally suffer from poor cycling performance and unsatisfied capacity,and inactive components of conductive agents,binders,and current collector further lower their overall capacity.Herein,we prepare coral-like carbon nanowres(CCNWs)doped with nitrogen as a binder-free anode material for K^(+)-ion storage,in which the unique coral-like porous nanostructure and amorphous/short-range-ordered composite feature are conducive to enhancing the structural stability,to facilitating the ion transfer and to boosting the full utilization of active sites during potassiation/de-potassiation process.As a result,the CCNW anode possesses a hybrid K^(+)-storage mechanism of diffusive behavior and capacitive adsorption,and stably delivers a high capacity of 276 mAh g^(-1)at 50 mA g^(-1),good rate capability up to 2 A g^(-1),and long-term cycling stability with 93%capacity retention after 2000 cycles at 1 A g^(-1).Further,assembling this CCNW anode with an environmentally benign expanded graphite(EG)cathode yields a proof-of-concept KDIB,which shows a high specific capacity of 134.4 mAh g^(-1)at 100 mA g^(-1),excellent rate capability of 106.5 mAh g^(-1)at 1 A g^(-1),and long-term cycling stability over 1000 cycles with negligible capacity loss.This study provides a feasible approach to developing high-performance anodes for potassium-based energy storage devices.展开更多
In this work,carbon fiber and polyaniline(CF|PANI)composites are prepared by using an electrochemical polymeriza-tion method.The morphology and composition characterization results show that the PANI nanospheres are s...In this work,carbon fiber and polyaniline(CF|PANI)composites are prepared by using an electrochemical polymeriza-tion method.The morphology and composition characterization results show that the PANI nanospheres are successfully syn-thesized and uniformly coated on the CF.When the electrodeposition period is 300 cycles,the as-prepared CF|PANI electrode ex-hibits good specific capacitance of 231.63 F/g at 1 A/g,high performance of 98.14%retention rate from 0.5 to 20 A/g,and excel-lent cycle stability with only 0.96%capacity loss after 1000 cycles.This is ascribed to the internal resistance that was signific-antly reduced without binders,which helps to the CF|PANI electrode maintains high operating potential and pseudo-capacit-ance performance at high current density.The symmetrical supercapacitor based on two CF|PANI electrodes connecting by acid-ic PVA-H2SO4 gel electrolyte exhibits an energy density of 6.55 W·h/kg at a power density of 564.37 W/kg.In addition,the asym-metric supercapacitor based on MoS2|MWCNTs and CF|PANI electrodes with neutral PVA-Na2SO4 gel electrolyte shows an en-ergy density of 16.12 W·h/kg at a power density of 525.03 W/kg.These results indicate that the low internal resistance contrib-utes to the high energy density of symmetrical supercapacitors and asymmetric supercapacitors at high current density and high power density,which is significant for its practical application.展开更多
Generally,the practical capacity of an electrode should include the weight of non-active components such as current collector,polymer binder,and conductive additives,which were as high as 70 wt%in current reported wor...Generally,the practical capacity of an electrode should include the weight of non-active components such as current collector,polymer binder,and conductive additives,which were as high as 70 wt%in current reported works,seriously limiting the practical capacity.This work pioneered the usage of ultralight reduced graphene fiber(rGF)fabrics as conductive scaffolds,aiming to reduce the weight of nonactive components and enhance the practical capacity.Ultrathin SnS2 nanosheets/rGF hybrids were prepared and used as binder-free electrodes of sodium-ion batteries(SIBs).The interfused graphene fibers endow the electrode a porous,continuous,and conductive network.The in situ phase transformation from SnO2 to SnS2 could preserve the strong interfacial interactions between SnS2 and graphene.Benefitting from these,the designed binder-free electrode delivers a high specific capacity of 500 mAh g?1 after 500 cycles at a current rate of 0.5 A g?1 with almost 100%Coulombic efficiency.Furthermore,the weight percentage of SnS2 in the whole electrode could reach up to 67.2 wt%,much higher than that of common electrode configurations using Cu foil,Al foil,or carbon cloth,significantly highlighting the ultralight characters and advantages of the rGF fabrics for using as binder-free electrodes of SIBs.展开更多
Extensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries(ARSIBs)for large-scale energy-storage applications due to their desired properties of abundant sodium resou...Extensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries(ARSIBs)for large-scale energy-storage applications due to their desired properties of abundant sodium resources and inherently safer aqueous electrolytes.However,it is still a significant challenge to develop highly flexible ARSIBs ascribing to the lack of flexible electrode materials.In this work,nanocube-like KNiFe(CN)6(KNHCF)and rugby balllike NaTi2(PO4)3(NTP)are grown on carbon nanotube fibers via simple and mild methods as the flexible binder-free cathode(KNHCF@CNTF)and anode(NTP@CNTF),respectively.Taking advantage of their high conductivity,fast charge transport paths,and large accessible surface area,the as-fabricated binder-free electrodes display admirable electrochemical performance.Inspired by the remarkable flexibility of the binder-free electrodes and the synergy of KNHCF@CNTF and NTP@CNTF,a high-performance quasi-solid-state fiber-shaped ARSIB(FARSIB)is successfully assembled for the first time.Significantly,the as-assembled FARSIB possesses a high capacity of 34.21 mAh cm?3 and impressive energy density of 39.32 mWh cm?3.More encouragingly,our FARSIB delivers superior mechanical flexibility with only 5.7%of initial capacity loss after bending at 90°for over 3000 cycles.Thus,this work opens up an avenue to design ultraflexible ARSIBs based on all binder-free electrodes for powering wearable and portable electronics.展开更多
Aluminum-ion batteries(AIBs)are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource.However,the inferior rate capacity and poor all-climate performance,espe...Aluminum-ion batteries(AIBs)are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource.However,the inferior rate capacity and poor all-climate performance,especially the decayed capacity under low temperature,are still critical challenges toward high-specific-capacity AIBs.Herein,we report a binder-free and freestanding metal-organic framework-derived FeS_(2)@C/carbon nanotube(FeS_(2)@C/CNT)as a novel all-climate cathode in AIBs working under a wide temperature window between−25 and 50℃ with exceptional flexibility.The resultant cathode not only drastically suppresses the side reaction and volu-metric expansion with high capacity and long-term stability but also greatly enhances the kinetic process in AIBs with remarkable rate capacity(above 151 mAh g^(−1) at 2 A g^(−1))at room temperature.More importantly,to break the bottleneck of the inherently low capacity in graphitic material-based all-climate AIBs,the new hierarchical conductive composite FeS_(2)@C/CNT highly promotes the all-climate performance and delivers as high as 117 mAh g^(−1) capacity even under−25°C.The well-designed metal sulfide electrode with remarkable performance paves a new way toward all-climate and flexible AIBs.展开更多
MoO_2 nanocrystals(NCs) on Ni foam were simply synthesized via a facile hydrothermal method and a dip-coating method. It was worth noting that ultrafine interconnected MoO_2 nanocrystals(about 10 nm) were uniformly an...MoO_2 nanocrystals(NCs) on Ni foam were simply synthesized via a facile hydrothermal method and a dip-coating method. It was worth noting that ultrafine interconnected MoO_2 nanocrystals(about 10 nm) were uniformly anchored on Ni foam to fabricate a particular three-dimensional architecture, which may provide more active sites and shorter transmission pathways for lithium ions. As binder-free anode, MoO_2 NCs on Ni foam deliver a high initial discharge capacity of 990 mAh·g^(-1) and retain a reversible capacity of 924 mAh· g(-1) after 100 cycles at a current density of 0.1 C. More importantly, when the current density returns from 2 C to 0.1 C, the capacity recovers to 910 mAh·g(-1)(about 92% of the original high capacity), suggesting excellent cycling stability and rate capability. The particular 3 D electrode as binder-free anode makes it a promising anode candidate for high-performance lithium-ion batteries.展开更多
Molybdenum sulfide(MoS_(2))with well-designed porous structure has the potential to be great electrode materials in sodium-ion batteries due to its high theoretical capacity and abundant resource,however,hindered by i...Molybdenum sulfide(MoS_(2))with well-designed porous structure has the potential to be great electrode materials in sodium-ion batteries due to its high theoretical capacity and abundant resource,however,hindered by its intrinsic low conductivity and stability.Herein,MoS_(2) with 3 D macroporous foam structure and high conductivity was obtained through SiO_(2) templates and integrated with carbon paper(3 D FMoS_(2)/CP).It has showed superior specific capacity(225 m A h g^(-1),0.4–3 V)and cycling stability(1000 cycles)at high rate(2000 m A g^(-1)),with a low decay rate(0.033%per cycle)in sodium-ion batteries.The excellent electrochemical performance may originate from its unique integrated structure:3 D MoS_(2) macropores providing high surface area and abundant transfer channels while carbon paper enhancing the conductivity of MoS_(2) and avoiding unnecessary side reactions brought by binder addition.展开更多
Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of catho...Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of cathodes. Herein, we fabricated amorphous manganese dioxide by an in situ deposition method. The amorphous manganese dioxide can directly serve as the cathode of an aqueous zinc-ion battery without a binder. The resultant cathode exhibits a high specific capacity of 133.9 mAh/g at 200 mA/g and a capacity retention of 82% over 50 cycles at 1 A/g.展开更多
Extending the potential window of aqueous supercapacitors (SCs) up to 2.0 V is still a great challenge.Based on their good dynamic structural reversibility and open framework structure,the coordination superamolecular...Extending the potential window of aqueous supercapacitors (SCs) up to 2.0 V is still a great challenge.Based on their good dynamic structural reversibility and open framework structure,the coordination superamolecular networks (CSNs) exhibit rapid charge/discharge ability and excellent cycle stability.As a typical coordination superamolecular network (CSN),Prussian blue (denoted as CSN-PB),which self-assembled by the CN-ligand and iron ions is firstly in-situ grown on carbon cloth,followed by electro-deposition of MnO2 to form CSN-PB/MnO2 composite electrode.Benefiting from synergistic effect of the constituent components,as well as the open framework structure of CSN-PB,this composite electrode reaches a high potential window of 1.4 V (vs.Ag/AgCl) and delivers a good specific capacitance of 315.3 F·g^-1 in aqueous electrolyte.An aqueous asymmetric device,constructed with CSN-PB/MnO2 composite as cathode and activated carbon as anode,can work in a stable potential window of 2.4 V,exhibits a high energy density of 46.13 Wh·kg^-1 and excellent cycling stability with 85.5% capacitance retention after 20,000 cycles.This work provides a new concept of high dynamic structural reversibility from CSNs to increase the cell voltage of asymmetric SCs for further boosting energy density.展开更多
Three-dimensional(3D) ultra-tiny Fe_(2)O_(3) nanoparticles/graphene hydrogels were prepared using a facile and efficient solvothermal reaction, by which the phase of iron oxide, particle size and the morphology of hyd...Three-dimensional(3D) ultra-tiny Fe_(2)O_(3) nanoparticles/graphene hydrogels were prepared using a facile and efficient solvothermal reaction, by which the phase of iron oxide, particle size and the morphology of hydrogels can be precisely controlled by simply adjusting the solvothermal reaction time. Accordingly, the effect of the microstructures of hydrogels on electrochemical performance was systematically studied. It was found that Fe_(2)O_(3)/r GO-50 hydrogels(with a solvothermal reaction time of 50 min) possessed a desirable crystallinity, suitable particle size, decent porous structure, large specific surface area and high electrical conductivity, thus exhibiting a superior electrochemical performance as binder-free anode of supercapacitors: a large potential range of 1.15 V, an ultrahigh specific capacitance of 1090 F·g^(-1) at a current density of 2A·g^(-1) and excellent rate capability (531 F·g^(-1) at 10 A·g^(-1)). The rational design and systematic research of electrode materials will provide new lights for the preparation of advanced electrochemical energy storage devices.展开更多
Durable and cost-effective electrode materials are essential for practical application of supercapacitors.Herein,large area NiCo_(2)O_(4)/reduced graphene oxide(NiCo_(2)O_(4)/rGO)composites with hierarchical structure...Durable and cost-effective electrode materials are essential for practical application of supercapacitors.Herein,large area NiCo_(2)O_(4)/reduced graphene oxide(NiCo_(2)O_(4)/rGO)composites with hierarchical structure were fabricated by a facile one-step ultrasonic spray on Ni foam and directly used as the binder-free electrodes for supercapacitors in aqueous KOH electrolyte.Owing to high electrical conductivity of rGO,hierarchical and layered structure of the electrode,as well as tight adhesion of active materials on the current collector,the as-obtained hybrid electrodes show a high specific capacitance of 871 F g^(-1)at current density of 1 A g^(-1),good rate performance and remarkable cycling stability with a capacitance retention of 134%after 30000 cycles.Besides,the assembled NiCo_(2)O_(4)/rGO//AC asymmetric supercapacitor(ASC)displays the maximum energy density of 29.3 Wh kg^(-1)at a power density of 790.8 W kg^(-1).Significantly,an ultralong cycling life of 102%capacitance retention is achieved for the ASC device after 30,000 charge/discharge cycles at 20 A g^(-1).The scalable fabrication route and excellent electrochemical performance of the NiCo_(2)O_(4)/rGO composites open the door for making novel hybrid electrodes of advanced supercapacitors.展开更多
Owing to the wide range and low cost of sodium resources,sodium-ion batteries(SIBs)have received extensive attention and research.Metal sulfides with high theoretical capacity are used as promising anode materials for...Owing to the wide range and low cost of sodium resources,sodium-ion batteries(SIBs)have received extensive attention and research.Metal sulfides with high theoretical capacity are used as promising anode materials for SIBs.This paper presents the electrochemical performance of the binder-free NiS_(2)nanosheet arrays grown on stainless steel(SS)substrate(NiS_(2)/SS)using an in situ growth and sulfidation strategy as anode for sodium ion batteries.Owing to the close connection between the NiS_(2)nanosheet arrays and the SS current collector,the NiS_(2)/SS anode demonstrates high rate capability with a reversible capacity of 492.5 mAh·g^(-1)at 5.0C rate.Such rate capability is superior to that of NiS_(2)nanoparticles(NiS_(2)/CMC:41.7 mAh·g^(-1)at 5.0C,NiS_(2)/PVDF:7.3 mAh·g^(-1)at 5.0C)and other Ni sulfides(100–450 mAh·g^(-1)at 5.0C)reported.Furthermore,the initial reversible specific capacity and Coulombic efficiency of NiS_(2)/SS are 786.5 mAh·g^(-1)and 81%,respec-tively,demonstrating a better sodium storage ability than those of most NiS_(2)anodes reported for SIBs.In addition,the amorphization and conversion mechanism during the sodiation/desodiation process of NiS_(2)are proposed after investigation by in situ X-ray diffraction(XRD)measurements of intermediate products at successive charge/discharge stages.展开更多
The binder-free composite films of reduced graphene oxide (rGO) and activated carbon derived from cotton (aCFC) have been fabricated and used as electrodes for electrochemical capacitors (ECs) to avoid the decre...The binder-free composite films of reduced graphene oxide (rGO) and activated carbon derived from cotton (aCFC) have been fabricated and used as electrodes for electrochemical capacitors (ECs) to avoid the decrease of capacitive performance in traditional process caused by the additional binder. The optimal aCFC is prepared at 850 ℃ when the mass ratio of carbon and potassium hydroxide is 1 to 4. The optimal composite film prepared from the mass ratio of aCFC/GO = 2/1 exhibits porous structure, and has a specific surface area of 849.6 m^2·g^-1 and a total pore volume of 0.61 mL·g^-1. Based on the two-electrode system testing in 6.0 mol/L KOH electrolyte, the optimal composite has specific capacitance of about 202 Fog-1, 374 mF·cm^-2 and 116 F·cm^-3 in terms of mass, area and volume, and shows excellent rate capability and good cyclic stability (91.7% retention of the initial capacitance after 5000 cycles). Furthermore, the assembled solid-state ECs by using KOH/polyvinyl alcohol as electrolyte show good mechanical stability and capacitive performances after repeated bending cycles. It is proved that this method is effective to fabricate binder-free electrodes for ECs and will open up a novel route for the reuse of waste cotton.展开更多
Potassium-ion batteries(PIBs)have attracted enormous attention due to the abundance of potassium resources,low cost,fast ionic conductivity of electrolyte and relatively high operating voltage.Despite great effo rts a...Potassium-ion batteries(PIBs)have attracted enormous attention due to the abundance of potassium resources,low cost,fast ionic conductivity of electrolyte and relatively high operating voltage.Despite great effo rts and progress,researches on PIBs are still at the initial stage,especially in the emerging field of flexible and wearable PIBs.The inevitable challenges for PIBs include low reversible capacity,unsatisfactory cycling stability and insufficient energy density,the solution to which mostly relies on designing adva nced electrodes.Binder-free electrodes have emerged as promising electrode architecture for PIBs.Such electrodes avoid the use of insulating binders,which can be designed with various synergistic functional materials to address the aforementioned PIB issues and be endowed with flexibility/wearability.In this review,we mainly summarize the recent progress on binde r-free electrodes for PIBs,with the focus on the methodologies,detailed strategies and functional materials for electrode construction.One strategy for binder-free electrodes is to assemble free-standing architecture with the help of carbon nanotubes(CNTs),graphitic fibers,and other carbon or mechanically robust materials,either alone or in combination.The other effective strategy is current collector substrate-assisted direct growth,including the use of carbon cloth,metal.MXenes and other conductive substrates.Additionally,challenges and research opportunities are put forward at the end as the guidance for future development of binder-free PIB devices.展开更多
From the perspective of high-temperature applications,materials with excellent high-temperature mechanical properties are always desirable.The present work demonstrates that the binder-free nanopolycrystalline WC cera...From the perspective of high-temperature applications,materials with excellent high-temperature mechanical properties are always desirable.The present work demonstrates that the binder-free nanopolycrystalline WC ceramic with an average grain size of 103 nm obtained by high-pressure and hightemperature sintering exhibits excellent mechanical properties at both room temperature and high temperature up to 1000℃.Specifically,the binder-free nanopolycrystalline WC ceramic still maintains a considerably high Vicker hardness H_(V)of 23.4 GPa at 1000℃,which is only 22%lower than the room temperature H_(V).This outstanding thermo-mechanical stability is superior to that of typical technical ceramics,e.g.SiC,Si_(3)N_(4),Al_(2)O_(3),etc.Nanocrystalline grains with many dislocations,numerous low-energy,highly stableΣ2 grain boundaries,and a relatively low thermal expansion coefficient,are responsible for the observed outstanding high-temperature mechanical properties.展开更多
The electro-Fenton process,with its capacity for in-situ H_(2)O_(2)formation and Fe^(2+)regeneration,is a strik-ing alternative to the traditional chemical-Fenton process.However,the frequent requirement of extra bind...The electro-Fenton process,with its capacity for in-situ H_(2)O_(2)formation and Fe^(2+)regeneration,is a strik-ing alternative to the traditional chemical-Fenton process.However,the frequent requirement of extra binders for electrode fabrication leads to low catalyst utilization,a complex fabrication process,and weak conductivity.Herein,a three-dimensional(3D)porous electrode was fabricated in-situ on a Ni foam(NF)substrate integrated with nitrogen-doped carbon nanotubes(N@C)derived from carbonization of zeolitic imidazolate framework-8(ZIF-8)without any binder.The resulting 900/N@C-NF cathode(synthesized at 900℃)was high in surface area,N content,and degree of graphitization,achieved high performance of H_(2)O_(2)production(2.58 mg L^(−1)h^(−1)H_(2)O_(2)/mg catalyst)at-0.7 V(vs.SCE),and enabled prompt regeneration of Fe^(2+).The electro-Fenton system equipped with the 900/N@C-NF cathode was effective in removing a diverse range of organic pollutants,including rhodamine B(Rh B),phenol,bisphenol A(BPA),nitroben-zene(NB),and Cu-ethylenediaminetetraacetic acid(EDTA),and significantly attenuating the concentration of chemical oxygen demand(COD)in the real acid wastewater,exhibiting superior activity and stability.This binder-free and self-supporting electro-Fenton cathode was thus shown to be an attractive candidate for application to wastewater treatment,particularly those rich in organics,acids,and Fe^(3+)/Fe^(2+).展开更多
As the anode active substance of lithium ions battery(LIB),the low conductivity/ion diffusivity and large volume changes of tungsten oxide(WO_(3))lead to its serious polarization during the lithiation/delithiation pro...As the anode active substance of lithium ions battery(LIB),the low conductivity/ion diffusivity and large volume changes of tungsten oxide(WO_(3))lead to its serious polarization during the lithiation/delithiation process,decreasing the cycling stability.To address these challenges,a binder-free anode consisting of nitrogen-doped tungsten oxide nanosheets,encapsulated in carbon layers(N-doped WO_(3)@CL)and entangled with carbon nanotubes macro-films(CMF),was successfully synthesized through a combination of hydrothermal and online assembly method.Compared with the pristine tungsten oxide entangled with carbon nanotubes macro-films(WO_(3)@CMF),the synthesized N-doped WO_(3)@CL@CMF as a binder-free LIB anode demonstrated better electrochemical performance,which could be attributed to(1)surface defects of WO_(3)created by N dopant providing more channels to improve Li^(+)diffusion,(2)the N-doped WO_(3)@CL with a flower-like structure shortening the diffusion length of Li^(+)ions and further leading to high Li^(+)incorporation,and(3)carbon layers and carbon nanotubes synergistically alleviating the large volume change of the N-doped WO_(3)@CL@CMF electrode during the charging and discharging process.The present study offers insights into employing nitrogen dopant and a carbon matrix to mediate the conductivity and wrapped structure in the WO_(3)semiconductor powder,which provides an important strategy for large-scale design of the binder-free LIB anode with high performance.展开更多
Eliminating the usage of metal current collectors and binders in traditional battery electrode configuration is an effective strategy to significantly improve the capacities of lithium ion batteries (LIBs). Herein, we...Eliminating the usage of metal current collectors and binders in traditional battery electrode configuration is an effective strategy to significantly improve the capacities of lithium ion batteries (LIBs). Herein, we demonstrate the construction of porous vanadium nitride (VN) nanosheet network in situ grown on nitrogen-rich (N-rich) carbon textile (N-C@P-VN) as lightweight and binder-free anode for LIBs. The N-rich carbon textile is used both as the current collector and host to store Li^(+), thus improving the specific capacities of binder-free VN anode and meanwhile reducing the inert mass of the whole cell. Moreover, the open spaces in carbon textile and vertically aligned pores in VN nanosheet network can not only provide an expressway for Li+ and e− transport, but also afford more active sites. As a result, the binder-free N-C@P-VN anode maintains a specific capacity of 1,040 mAh·g^(−1) (or an areal capacity of 2.6 mAh·cm^(−2)) after 100 cycles at 0.1 mA·cm^(−2) in half cell. Moreover, in an assembled N-C@P-VN//LiFePO4 full cell, it exhibits an areal capacity of 1.7 mAh·cm^(−2) after 300 cycles at 0.1 C. The synergistic strategy of N-C substrate and porous VN network could be applied to guide rational design of similar N-C@nitride or sulfide hybrid systems with corresponding sulfur-doped carbon textile as the substrate.展开更多
Cobalt phosphide(CoP) is a promising anode candidate for lithium-ion batteries(LIBs) due to its high specific capacity and low working potential.However,the poor cycling stability and rate performance,caused by low el...Cobalt phosphide(CoP) is a promising anode candidate for lithium-ion batteries(LIBs) due to its high specific capacity and low working potential.However,the poor cycling stability and rate performance,caused by low electrical conductivity and huge volume variation,impede the further practical application of CoP anode materials.Herein,we report an integrated binder-free electrode featuring needle-like CoP arrays grown on carbon fiber cloth(CC) for efficient lithium storage.The as-prepared CoP/CC electrode integrates the advantages of 1 D needle-like CoP arrays for efficient electrolyte wettability and fast cha rge transpo rtation,and 3 D CC substrate for superior mechanical stability,flexibility and high conductivity.As a result,the CoP/CC electrode delivers an initial specific capacity of 1283 mAh/g and initial Coulombic effeciencies of 85.4%,which are much higher than that of conventional CoP electrode.Notably,the Co P/CC electrode shows outstanding cycling performance up to 400 cycles at 0.5 A/cm^(2) and excellent rate performance with a discharge capacity of 549 mAh/g even at 5 A/cm^(2).This work demonstrates the great potential of integrated CoP/CC hybrid as efficient bind-free and freestanding electrode for LIBs and future flexible electronic devices.展开更多
The rechargeable aluminum-sulfur(Al-S)battery is a promising alternative-energy storage device with high energy density and made of cheap raw materials.However,Al-S batteries face several obstacles,especially the shut...The rechargeable aluminum-sulfur(Al-S)battery is a promising alternative-energy storage device with high energy density and made of cheap raw materials.However,Al-S batteries face several obstacles,especially the shuttle effect.Herein,a binder-free S@Ti_(3)C_(2)T_(x)sandwich structure film with uniform sulfur dispersion was designed.The two-dimensional(2D)layered material Ti_(3)C_(2)T_(x) not only has the function of binder and conductive agent but also is a promising host for sulfur anchoring.As a result,S@Ti_(3)C_(2)T_(x)film showed an initial capacity of 489 mA h g^(−1)at 300 mA g^(−1) and retained the value at 415 mA h g^(−1)after 280 stable cycles,with an average Coulombic efficiency of~95%.The film displayed higher capacity and stability than the S+Ti_(3)C_(2)T_(x)cathode prepared by the slurry-coating method(the initial capacity was 317 mA h g^(−1)and then decayed to 222 mA h g^(−1) after 160 cycles).The main capacity of S@Ti_(3)C_(2)T_(x) film in the Al-S battery came from the reversible redox reaction of S^(2−) and S.This new 2D material combined with a controllable electrode structure design paves the way for the development of Al-S batteries.展开更多
基金supported by the Key-Area Research and Development Program of Guangdong Province(2019B090914003)National Natural Science Foundation of China(11904379,51972329,51822210,52061160484)+2 种基金Shenzhen Science and Technology Planning Project(JCYJ20190807171803813,JCYJ2020010911562492,KQTD20161129150510559)China Postdoctoral Science Foundation(2018M643235)Guangdong Basic and Applied Basic Research Foundation(2019A1515011902,2019TX05L389)。
文摘Owing to the advantages of high operating voltage,environmental benignity,and low cost,potassium-based dual-ion batteries(KDIBs)have been considered as a potential candidate for large-scale energy storage.However,KDIBs generally suffer from poor cycling performance and unsatisfied capacity,and inactive components of conductive agents,binders,and current collector further lower their overall capacity.Herein,we prepare coral-like carbon nanowres(CCNWs)doped with nitrogen as a binder-free anode material for K^(+)-ion storage,in which the unique coral-like porous nanostructure and amorphous/short-range-ordered composite feature are conducive to enhancing the structural stability,to facilitating the ion transfer and to boosting the full utilization of active sites during potassiation/de-potassiation process.As a result,the CCNW anode possesses a hybrid K^(+)-storage mechanism of diffusive behavior and capacitive adsorption,and stably delivers a high capacity of 276 mAh g^(-1)at 50 mA g^(-1),good rate capability up to 2 A g^(-1),and long-term cycling stability with 93%capacity retention after 2000 cycles at 1 A g^(-1).Further,assembling this CCNW anode with an environmentally benign expanded graphite(EG)cathode yields a proof-of-concept KDIB,which shows a high specific capacity of 134.4 mAh g^(-1)at 100 mA g^(-1),excellent rate capability of 106.5 mAh g^(-1)at 1 A g^(-1),and long-term cycling stability over 1000 cycles with negligible capacity loss.This study provides a feasible approach to developing high-performance anodes for potassium-based energy storage devices.
基金grateful to the joint support by NSFC(No.61704047).
文摘In this work,carbon fiber and polyaniline(CF|PANI)composites are prepared by using an electrochemical polymeriza-tion method.The morphology and composition characterization results show that the PANI nanospheres are successfully syn-thesized and uniformly coated on the CF.When the electrodeposition period is 300 cycles,the as-prepared CF|PANI electrode ex-hibits good specific capacitance of 231.63 F/g at 1 A/g,high performance of 98.14%retention rate from 0.5 to 20 A/g,and excel-lent cycle stability with only 0.96%capacity loss after 1000 cycles.This is ascribed to the internal resistance that was signific-antly reduced without binders,which helps to the CF|PANI electrode maintains high operating potential and pseudo-capacit-ance performance at high current density.The symmetrical supercapacitor based on two CF|PANI electrodes connecting by acid-ic PVA-H2SO4 gel electrolyte exhibits an energy density of 6.55 W·h/kg at a power density of 564.37 W/kg.In addition,the asym-metric supercapacitor based on MoS2|MWCNTs and CF|PANI electrodes with neutral PVA-Na2SO4 gel electrolyte shows an en-ergy density of 16.12 W·h/kg at a power density of 525.03 W/kg.These results indicate that the low internal resistance contrib-utes to the high energy density of symmetrical supercapacitors and asymmetric supercapacitors at high current density and high power density,which is significant for its practical application.
基金financially supported by the National Natural Science Foundation of China(Nos.21503025,21503178 and 21603019)Fundamental Research Funds for the Central Universities(Nos.0903005203377 and 106112016CDJZR325520)+3 种基金Key Program for International Science and Technology Cooperation Projects of Ministry of Science and Technology of China(No.2016YFE0125900)Venture and Innovation Support Program for Chongqing Overseas Returnees(cx2017060 and cx2017115)Chongqing Research Program of Basic Research and Frontier Technology(No.cstc2016jcyjA1059)Hundred Talents Program of Chongqing University.
文摘Generally,the practical capacity of an electrode should include the weight of non-active components such as current collector,polymer binder,and conductive additives,which were as high as 70 wt%in current reported works,seriously limiting the practical capacity.This work pioneered the usage of ultralight reduced graphene fiber(rGF)fabrics as conductive scaffolds,aiming to reduce the weight of nonactive components and enhance the practical capacity.Ultrathin SnS2 nanosheets/rGF hybrids were prepared and used as binder-free electrodes of sodium-ion batteries(SIBs).The interfused graphene fibers endow the electrode a porous,continuous,and conductive network.The in situ phase transformation from SnO2 to SnS2 could preserve the strong interfacial interactions between SnS2 and graphene.Benefitting from these,the designed binder-free electrode delivers a high specific capacity of 500 mAh g?1 after 500 cycles at a current rate of 0.5 A g?1 with almost 100%Coulombic efficiency.Furthermore,the weight percentage of SnS2 in the whole electrode could reach up to 67.2 wt%,much higher than that of common electrode configurations using Cu foil,Al foil,or carbon cloth,significantly highlighting the ultralight characters and advantages of the rGF fabrics for using as binder-free electrodes of SIBs.
基金supported by the Fundamental Research Funds for the Central Universities(No.020514380183)the National Natural Science Foundation of China(No.51703241)+1 种基金the Key Research Program of Frontier Science of Chinese Academy of Sciences(No.QYZDB-SSW-SLH031)the Thousand Youth Talents Plan,and the Science and Technology Project of Nanchang(2017-SJSYS-008).
文摘Extensive efforts have recently been devoted to the construction of aqueous rechargeable sodium-ion batteries(ARSIBs)for large-scale energy-storage applications due to their desired properties of abundant sodium resources and inherently safer aqueous electrolytes.However,it is still a significant challenge to develop highly flexible ARSIBs ascribing to the lack of flexible electrode materials.In this work,nanocube-like KNiFe(CN)6(KNHCF)and rugby balllike NaTi2(PO4)3(NTP)are grown on carbon nanotube fibers via simple and mild methods as the flexible binder-free cathode(KNHCF@CNTF)and anode(NTP@CNTF),respectively.Taking advantage of their high conductivity,fast charge transport paths,and large accessible surface area,the as-fabricated binder-free electrodes display admirable electrochemical performance.Inspired by the remarkable flexibility of the binder-free electrodes and the synergy of KNHCF@CNTF and NTP@CNTF,a high-performance quasi-solid-state fiber-shaped ARSIB(FARSIB)is successfully assembled for the first time.Significantly,the as-assembled FARSIB possesses a high capacity of 34.21 mAh cm?3 and impressive energy density of 39.32 mWh cm?3.More encouragingly,our FARSIB delivers superior mechanical flexibility with only 5.7%of initial capacity loss after bending at 90°for over 3000 cycles.Thus,this work opens up an avenue to design ultraflexible ARSIBs based on all binder-free electrodes for powering wearable and portable electronics.
基金financial support for Australian Research Council through its Discovery and Linkage Programsperformed in part at Australian Microscopy&Microanalysis Research Facility at the Centre for Microscopy and Microanalysis,the University of Queensland(UQ)+3 种基金The authors also acknowledge National Natural Science Foundation of China(51901100 and 51871119)Jiangsu Provincial Founds for Natural Science Foundation(BK20180015)China Postdoctoral Science Foundation(2018M640481 and 2019T120426)Jiangsu Postdoctoral Research Fund(2019K003)。
文摘Aluminum-ion batteries(AIBs)are promising next-generation batteries systems because of their features of low cost and abundant aluminum resource.However,the inferior rate capacity and poor all-climate performance,especially the decayed capacity under low temperature,are still critical challenges toward high-specific-capacity AIBs.Herein,we report a binder-free and freestanding metal-organic framework-derived FeS_(2)@C/carbon nanotube(FeS_(2)@C/CNT)as a novel all-climate cathode in AIBs working under a wide temperature window between−25 and 50℃ with exceptional flexibility.The resultant cathode not only drastically suppresses the side reaction and volu-metric expansion with high capacity and long-term stability but also greatly enhances the kinetic process in AIBs with remarkable rate capacity(above 151 mAh g^(−1) at 2 A g^(−1))at room temperature.More importantly,to break the bottleneck of the inherently low capacity in graphitic material-based all-climate AIBs,the new hierarchical conductive composite FeS_(2)@C/CNT highly promotes the all-climate performance and delivers as high as 117 mAh g^(−1) capacity even under−25°C.The well-designed metal sulfide electrode with remarkable performance paves a new way toward all-climate and flexible AIBs.
基金Funded by the National Natural Science Foundation of China(51506155)
文摘MoO_2 nanocrystals(NCs) on Ni foam were simply synthesized via a facile hydrothermal method and a dip-coating method. It was worth noting that ultrafine interconnected MoO_2 nanocrystals(about 10 nm) were uniformly anchored on Ni foam to fabricate a particular three-dimensional architecture, which may provide more active sites and shorter transmission pathways for lithium ions. As binder-free anode, MoO_2 NCs on Ni foam deliver a high initial discharge capacity of 990 mAh·g^(-1) and retain a reversible capacity of 924 mAh· g(-1) after 100 cycles at a current density of 0.1 C. More importantly, when the current density returns from 2 C to 0.1 C, the capacity recovers to 910 mAh·g(-1)(about 92% of the original high capacity), suggesting excellent cycling stability and rate capability. The particular 3 D electrode as binder-free anode makes it a promising anode candidate for high-performance lithium-ion batteries.
基金supported financially by the National Key R&D Program of China(No.2016YFA0204100,2016YFA0200200)the National Natural Science Foundation of China(No.21890753,21988101,21905035)+1 种基金the Danish company Haldor Tops?e A/S,Liaoning Revitalization Talents Program(XLYC1907093)the Liaoning Natural Science Foundation(20180510043)。
文摘Molybdenum sulfide(MoS_(2))with well-designed porous structure has the potential to be great electrode materials in sodium-ion batteries due to its high theoretical capacity and abundant resource,however,hindered by its intrinsic low conductivity and stability.Herein,MoS_(2) with 3 D macroporous foam structure and high conductivity was obtained through SiO_(2) templates and integrated with carbon paper(3 D FMoS_(2)/CP).It has showed superior specific capacity(225 m A h g^(-1),0.4–3 V)and cycling stability(1000 cycles)at high rate(2000 m A g^(-1)),with a low decay rate(0.033%per cycle)in sodium-ion batteries.The excellent electrochemical performance may originate from its unique integrated structure:3 D MoS_(2) macropores providing high surface area and abundant transfer channels while carbon paper enhancing the conductivity of MoS_(2) and avoiding unnecessary side reactions brought by binder addition.
文摘Aqueous zinc-ion battery has attracted much attention due to its low price, high safety, and high theoretical specific capacity. However, most of their performances are limited by the unsatisfied architecture of cathodes. Herein, we fabricated amorphous manganese dioxide by an in situ deposition method. The amorphous manganese dioxide can directly serve as the cathode of an aqueous zinc-ion battery without a binder. The resultant cathode exhibits a high specific capacity of 133.9 mAh/g at 200 mA/g and a capacity retention of 82% over 50 cycles at 1 A/g.
基金the National Natural Science Foundation of China (Nos.51472275,20973203 and 91022012)Guangdong Natural Science Foundation (No.2014A030313207)as well as Laboratory Open Fund Project of Sun Yat-sen University (No.201610310003).
文摘Extending the potential window of aqueous supercapacitors (SCs) up to 2.0 V is still a great challenge.Based on their good dynamic structural reversibility and open framework structure,the coordination superamolecular networks (CSNs) exhibit rapid charge/discharge ability and excellent cycle stability.As a typical coordination superamolecular network (CSN),Prussian blue (denoted as CSN-PB),which self-assembled by the CN-ligand and iron ions is firstly in-situ grown on carbon cloth,followed by electro-deposition of MnO2 to form CSN-PB/MnO2 composite electrode.Benefiting from synergistic effect of the constituent components,as well as the open framework structure of CSN-PB,this composite electrode reaches a high potential window of 1.4 V (vs.Ag/AgCl) and delivers a good specific capacitance of 315.3 F·g^-1 in aqueous electrolyte.An aqueous asymmetric device,constructed with CSN-PB/MnO2 composite as cathode and activated carbon as anode,can work in a stable potential window of 2.4 V,exhibits a high energy density of 46.13 Wh·kg^-1 and excellent cycling stability with 85.5% capacitance retention after 20,000 cycles.This work provides a new concept of high dynamic structural reversibility from CSNs to increase the cell voltage of asymmetric SCs for further boosting energy density.
基金financially supported by the National Natural Science Foundation of China (Nos. 21603019,51772034 and 12075224)the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure(No. SKL201807SIC)The Fundamental Research Funds for the Central Universities (No. 2019CDJGFCL004)。
文摘Three-dimensional(3D) ultra-tiny Fe_(2)O_(3) nanoparticles/graphene hydrogels were prepared using a facile and efficient solvothermal reaction, by which the phase of iron oxide, particle size and the morphology of hydrogels can be precisely controlled by simply adjusting the solvothermal reaction time. Accordingly, the effect of the microstructures of hydrogels on electrochemical performance was systematically studied. It was found that Fe_(2)O_(3)/r GO-50 hydrogels(with a solvothermal reaction time of 50 min) possessed a desirable crystallinity, suitable particle size, decent porous structure, large specific surface area and high electrical conductivity, thus exhibiting a superior electrochemical performance as binder-free anode of supercapacitors: a large potential range of 1.15 V, an ultrahigh specific capacitance of 1090 F·g^(-1) at a current density of 2A·g^(-1) and excellent rate capability (531 F·g^(-1) at 10 A·g^(-1)). The rational design and systematic research of electrode materials will provide new lights for the preparation of advanced electrochemical energy storage devices.
基金financially supported by the Science and Technology Commission of Shanghai Municipality(No.18060502300)the Natural Science Foundation of Shanghai(21ZR1445700)+1 种基金the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-07-E00015)the Medical Engineering Cross Project of USST(No.10-20-310-402)
文摘Durable and cost-effective electrode materials are essential for practical application of supercapacitors.Herein,large area NiCo_(2)O_(4)/reduced graphene oxide(NiCo_(2)O_(4)/rGO)composites with hierarchical structure were fabricated by a facile one-step ultrasonic spray on Ni foam and directly used as the binder-free electrodes for supercapacitors in aqueous KOH electrolyte.Owing to high electrical conductivity of rGO,hierarchical and layered structure of the electrode,as well as tight adhesion of active materials on the current collector,the as-obtained hybrid electrodes show a high specific capacitance of 871 F g^(-1)at current density of 1 A g^(-1),good rate performance and remarkable cycling stability with a capacitance retention of 134%after 30000 cycles.Besides,the assembled NiCo_(2)O_(4)/rGO//AC asymmetric supercapacitor(ASC)displays the maximum energy density of 29.3 Wh kg^(-1)at a power density of 790.8 W kg^(-1).Significantly,an ultralong cycling life of 102%capacitance retention is achieved for the ASC device after 30,000 charge/discharge cycles at 20 A g^(-1).The scalable fabrication route and excellent electrochemical performance of the NiCo_(2)O_(4)/rGO composites open the door for making novel hybrid electrodes of advanced supercapacitors.
基金the National Natural Science Foundation of China(No.21673051)the Department of Science and Technology of Guangdong Province(No.2019A050510043)the Department of Science and Technology of Zhuhai City,China(No.ZH22017001200059PWC)。
文摘Owing to the wide range and low cost of sodium resources,sodium-ion batteries(SIBs)have received extensive attention and research.Metal sulfides with high theoretical capacity are used as promising anode materials for SIBs.This paper presents the electrochemical performance of the binder-free NiS_(2)nanosheet arrays grown on stainless steel(SS)substrate(NiS_(2)/SS)using an in situ growth and sulfidation strategy as anode for sodium ion batteries.Owing to the close connection between the NiS_(2)nanosheet arrays and the SS current collector,the NiS_(2)/SS anode demonstrates high rate capability with a reversible capacity of 492.5 mAh·g^(-1)at 5.0C rate.Such rate capability is superior to that of NiS_(2)nanoparticles(NiS_(2)/CMC:41.7 mAh·g^(-1)at 5.0C,NiS_(2)/PVDF:7.3 mAh·g^(-1)at 5.0C)and other Ni sulfides(100–450 mAh·g^(-1)at 5.0C)reported.Furthermore,the initial reversible specific capacity and Coulombic efficiency of NiS_(2)/SS are 786.5 mAh·g^(-1)and 81%,respec-tively,demonstrating a better sodium storage ability than those of most NiS_(2)anodes reported for SIBs.In addition,the amorphization and conversion mechanism during the sodiation/desodiation process of NiS_(2)are proposed after investigation by in situ X-ray diffraction(XRD)measurements of intermediate products at successive charge/discharge stages.
基金Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/cjoc.201700398 or from the author.Acknowledgement This work was supported by the National Natural Science Foundation of China (Nos. U1510121, 21574076, 21501113, 61504076 and 21407100) and Shanxi Province (No. 2015021129), the Program for the Top Young and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 020352901014), and Graduate Student Education Innovation Project in Shanxi Province (No. 2016BY009).
文摘The binder-free composite films of reduced graphene oxide (rGO) and activated carbon derived from cotton (aCFC) have been fabricated and used as electrodes for electrochemical capacitors (ECs) to avoid the decrease of capacitive performance in traditional process caused by the additional binder. The optimal aCFC is prepared at 850 ℃ when the mass ratio of carbon and potassium hydroxide is 1 to 4. The optimal composite film prepared from the mass ratio of aCFC/GO = 2/1 exhibits porous structure, and has a specific surface area of 849.6 m^2·g^-1 and a total pore volume of 0.61 mL·g^-1. Based on the two-electrode system testing in 6.0 mol/L KOH electrolyte, the optimal composite has specific capacitance of about 202 Fog-1, 374 mF·cm^-2 and 116 F·cm^-3 in terms of mass, area and volume, and shows excellent rate capability and good cyclic stability (91.7% retention of the initial capacitance after 5000 cycles). Furthermore, the assembled solid-state ECs by using KOH/polyvinyl alcohol as electrolyte show good mechanical stability and capacitive performances after repeated bending cycles. It is proved that this method is effective to fabricate binder-free electrodes for ECs and will open up a novel route for the reuse of waste cotton.
基金supported by the National Natural Science Foundation of China(Nos.51972257,51672205 and 51872104)the National Key R&D Program of China(No.2016YFA0202602)。
文摘Potassium-ion batteries(PIBs)have attracted enormous attention due to the abundance of potassium resources,low cost,fast ionic conductivity of electrolyte and relatively high operating voltage.Despite great effo rts and progress,researches on PIBs are still at the initial stage,especially in the emerging field of flexible and wearable PIBs.The inevitable challenges for PIBs include low reversible capacity,unsatisfactory cycling stability and insufficient energy density,the solution to which mostly relies on designing adva nced electrodes.Binder-free electrodes have emerged as promising electrode architecture for PIBs.Such electrodes avoid the use of insulating binders,which can be designed with various synergistic functional materials to address the aforementioned PIB issues and be endowed with flexibility/wearability.In this review,we mainly summarize the recent progress on binde r-free electrodes for PIBs,with the focus on the methodologies,detailed strategies and functional materials for electrode construction.One strategy for binder-free electrodes is to assemble free-standing architecture with the help of carbon nanotubes(CNTs),graphitic fibers,and other carbon or mechanically robust materials,either alone or in combination.The other effective strategy is current collector substrate-assisted direct growth,including the use of carbon cloth,metal.MXenes and other conductive substrates.Additionally,challenges and research opportunities are put forward at the end as the guidance for future development of binder-free PIB devices.
基金supported by the National Key R&D Program of China(Grant No.2018YFA0305900)the Natural Science Basic Research Program of Shaanxi Province(Grant No.2020JQ870)+2 种基金the National Natural Science Foundation of China(Nos.52090020,U20A20238,51772260,91963203,51525205)NSF for Distinguished Young Scholars of Hebei Province of China(E2018203349)the China Postdoctoral Science Foundation(2017M620097)。
文摘From the perspective of high-temperature applications,materials with excellent high-temperature mechanical properties are always desirable.The present work demonstrates that the binder-free nanopolycrystalline WC ceramic with an average grain size of 103 nm obtained by high-pressure and hightemperature sintering exhibits excellent mechanical properties at both room temperature and high temperature up to 1000℃.Specifically,the binder-free nanopolycrystalline WC ceramic still maintains a considerably high Vicker hardness H_(V)of 23.4 GPa at 1000℃,which is only 22%lower than the room temperature H_(V).This outstanding thermo-mechanical stability is superior to that of typical technical ceramics,e.g.SiC,Si_(3)N_(4),Al_(2)O_(3),etc.Nanocrystalline grains with many dislocations,numerous low-energy,highly stableΣ2 grain boundaries,and a relatively low thermal expansion coefficient,are responsible for the observed outstanding high-temperature mechanical properties.
基金financial support from the Guangdong Special Support Plan for Innovation Teams (No.2019BT02L218)the Science and Technology Planning Project of Guangdong Province,China (No.2019A050510009)+3 种基金the Guangdong Special Support Plan for Young Top-notch Talents (No.2019TQ05L179)the National Natural Science Foundation of China (No.21876052)the Science and Technology Program of Guangzhou,China (No.201904010293)the Fundamental Research Funds for the Central Universities,SCUT (No.2020ZYGXZR055)。
文摘The electro-Fenton process,with its capacity for in-situ H_(2)O_(2)formation and Fe^(2+)regeneration,is a strik-ing alternative to the traditional chemical-Fenton process.However,the frequent requirement of extra binders for electrode fabrication leads to low catalyst utilization,a complex fabrication process,and weak conductivity.Herein,a three-dimensional(3D)porous electrode was fabricated in-situ on a Ni foam(NF)substrate integrated with nitrogen-doped carbon nanotubes(N@C)derived from carbonization of zeolitic imidazolate framework-8(ZIF-8)without any binder.The resulting 900/N@C-NF cathode(synthesized at 900℃)was high in surface area,N content,and degree of graphitization,achieved high performance of H_(2)O_(2)production(2.58 mg L^(−1)h^(−1)H_(2)O_(2)/mg catalyst)at-0.7 V(vs.SCE),and enabled prompt regeneration of Fe^(2+).The electro-Fenton system equipped with the 900/N@C-NF cathode was effective in removing a diverse range of organic pollutants,including rhodamine B(Rh B),phenol,bisphenol A(BPA),nitroben-zene(NB),and Cu-ethylenediaminetetraacetic acid(EDTA),and significantly attenuating the concentration of chemical oxygen demand(COD)in the real acid wastewater,exhibiting superior activity and stability.This binder-free and self-supporting electro-Fenton cathode was thus shown to be an attractive candidate for application to wastewater treatment,particularly those rich in organics,acids,and Fe^(3+)/Fe^(2+).
基金This study was financially supported by the National Natural Science Foundation of China[Grant No.22062008]Supported by the program of Qingjiang Excellent Young Talents,Jiangxi University of Science and Technology[Grant No.JXUSTQJBJ2020008]+2 种基金the Special Fund for Postgraduate Innovation of Jiangxi Province[Grant No.YC2020-S458 and YC2021-S569]National Training Program for College Students’Innovation and Entrepreneurship[Grant No.202110407005X]the Postdoctoral Science Foundation of Jiangxi Province[Grant No.2019KY56 and 2018RC02].
文摘As the anode active substance of lithium ions battery(LIB),the low conductivity/ion diffusivity and large volume changes of tungsten oxide(WO_(3))lead to its serious polarization during the lithiation/delithiation process,decreasing the cycling stability.To address these challenges,a binder-free anode consisting of nitrogen-doped tungsten oxide nanosheets,encapsulated in carbon layers(N-doped WO_(3)@CL)and entangled with carbon nanotubes macro-films(CMF),was successfully synthesized through a combination of hydrothermal and online assembly method.Compared with the pristine tungsten oxide entangled with carbon nanotubes macro-films(WO_(3)@CMF),the synthesized N-doped WO_(3)@CL@CMF as a binder-free LIB anode demonstrated better electrochemical performance,which could be attributed to(1)surface defects of WO_(3)created by N dopant providing more channels to improve Li^(+)diffusion,(2)the N-doped WO_(3)@CL with a flower-like structure shortening the diffusion length of Li^(+)ions and further leading to high Li^(+)incorporation,and(3)carbon layers and carbon nanotubes synergistically alleviating the large volume change of the N-doped WO_(3)@CL@CMF electrode during the charging and discharging process.The present study offers insights into employing nitrogen dopant and a carbon matrix to mediate the conductivity and wrapped structure in the WO_(3)semiconductor powder,which provides an important strategy for large-scale design of the binder-free LIB anode with high performance.
基金This work was supported by the National Natural Science Foundation of China(No.21872008)the Natural Science Foundation of Beijing,China(No.2212019)Beijing Institute of Technology Research Fund Program for Young Scholars(Nos.3100011182019 and 3100011182128).We would also thank the Analysis&Testing Center of Beijing Institute of Technology measurements.
文摘Eliminating the usage of metal current collectors and binders in traditional battery electrode configuration is an effective strategy to significantly improve the capacities of lithium ion batteries (LIBs). Herein, we demonstrate the construction of porous vanadium nitride (VN) nanosheet network in situ grown on nitrogen-rich (N-rich) carbon textile (N-C@P-VN) as lightweight and binder-free anode for LIBs. The N-rich carbon textile is used both as the current collector and host to store Li^(+), thus improving the specific capacities of binder-free VN anode and meanwhile reducing the inert mass of the whole cell. Moreover, the open spaces in carbon textile and vertically aligned pores in VN nanosheet network can not only provide an expressway for Li+ and e− transport, but also afford more active sites. As a result, the binder-free N-C@P-VN anode maintains a specific capacity of 1,040 mAh·g^(−1) (or an areal capacity of 2.6 mAh·cm^(−2)) after 100 cycles at 0.1 mA·cm^(−2) in half cell. Moreover, in an assembled N-C@P-VN//LiFePO4 full cell, it exhibits an areal capacity of 1.7 mAh·cm^(−2) after 300 cycles at 0.1 C. The synergistic strategy of N-C substrate and porous VN network could be applied to guide rational design of similar N-C@nitride or sulfide hybrid systems with corresponding sulfur-doped carbon textile as the substrate.
基金financial supported by the National Natural Science Foundation of China(Nos.51662029,21863006)Jiangxi Province Research Program of Science and Technology(No.2011BBE50023)。
文摘Cobalt phosphide(CoP) is a promising anode candidate for lithium-ion batteries(LIBs) due to its high specific capacity and low working potential.However,the poor cycling stability and rate performance,caused by low electrical conductivity and huge volume variation,impede the further practical application of CoP anode materials.Herein,we report an integrated binder-free electrode featuring needle-like CoP arrays grown on carbon fiber cloth(CC) for efficient lithium storage.The as-prepared CoP/CC electrode integrates the advantages of 1 D needle-like CoP arrays for efficient electrolyte wettability and fast cha rge transpo rtation,and 3 D CC substrate for superior mechanical stability,flexibility and high conductivity.As a result,the CoP/CC electrode delivers an initial specific capacity of 1283 mAh/g and initial Coulombic effeciencies of 85.4%,which are much higher than that of conventional CoP electrode.Notably,the Co P/CC electrode shows outstanding cycling performance up to 400 cycles at 0.5 A/cm^(2) and excellent rate performance with a discharge capacity of 549 mAh/g even at 5 A/cm^(2).This work demonstrates the great potential of integrated CoP/CC hybrid as efficient bind-free and freestanding electrode for LIBs and future flexible electronic devices.
基金supported by the National Natural Science Foundation of China(51272155,21875061,21975066 and 21901157)the Open Research Fund Program of Science and Technology on Aerospace Chemical Power Laboratory(STACPL 120201B05)the National Key R&D Program of China(2021YFC2100100)。
文摘The rechargeable aluminum-sulfur(Al-S)battery is a promising alternative-energy storage device with high energy density and made of cheap raw materials.However,Al-S batteries face several obstacles,especially the shuttle effect.Herein,a binder-free S@Ti_(3)C_(2)T_(x)sandwich structure film with uniform sulfur dispersion was designed.The two-dimensional(2D)layered material Ti_(3)C_(2)T_(x) not only has the function of binder and conductive agent but also is a promising host for sulfur anchoring.As a result,S@Ti_(3)C_(2)T_(x)film showed an initial capacity of 489 mA h g^(−1)at 300 mA g^(−1) and retained the value at 415 mA h g^(−1)after 280 stable cycles,with an average Coulombic efficiency of~95%.The film displayed higher capacity and stability than the S+Ti_(3)C_(2)T_(x)cathode prepared by the slurry-coating method(the initial capacity was 317 mA h g^(−1)and then decayed to 222 mA h g^(−1) after 160 cycles).The main capacity of S@Ti_(3)C_(2)T_(x) film in the Al-S battery came from the reversible redox reaction of S^(2−) and S.This new 2D material combined with a controllable electrode structure design paves the way for the development of Al-S batteries.