This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Second...This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Secondly, the geomagnetic navigation model is established by constructing a cost function. Then, by taking into consideration the biological magneto-taxis movement behavior for the geomagnetic environment stimulus, the multiobjective evolutionary search algorithm is derived to describe the search process. Finally, compared to the state-of-the-art, the proposed method presents better robustness. The simulation results demonstrate the reliability and feasibility of the proposed method.展开更多
GNSS( global navigation satellite systems) are unavailable in challenging environments such as urban canyon and indoor locations due to signal blocking and jamming. Camera / IMU( inertial measurement units) integrated...GNSS( global navigation satellite systems) are unavailable in challenging environments such as urban canyon and indoor locations due to signal blocking and jamming. Camera / IMU( inertial measurement units) integrated navigation systems can be alternatives to GNSS. In this paper,a tightly coupled Camera / IMU algorithm modeled by IEKF( iterated extended kalman filter) is presented. This tight integration approach uses image generated pixel coordinates to update the Kalman Filter directly. The developed algorithm is verified by a hybrid simulation,i.e. using inertial data from field test to fuse with simulated image feature measurements. The results show that the tight approach is superior to the loose integration when the image measurements are insufficient( i.e. less than three ground control points).展开更多
A system is described here that can noninvasively control the navigation of freely behaving rat via ultrasonic,epidermaland LED photic stimulators on the back.The system receives commands from a remote host computer t...A system is described here that can noninvasively control the navigation of freely behaving rat via ultrasonic,epidermaland LED photic stimulators on the back.The system receives commands from a remote host computer to deliver specifiedelectrical stimulations to the hearing,pain and visual senses of the rat respectively.The results demonstrate that the three stimuliwork in groups for the rat navigation.We can control the rat to proceed and make right and left turns with great efficiency.Thisexperiment verified that the rat was able to reach a setting destination in the way of cable with the help of a person through theappropriate coordination of the three stimulators.The telemetry video camera mounted on the head of the rat also achieveddistant image acquisition and helped to adjust its navigation path over a distance of 300 m.In a word,the non-invasive motioncontrol navigation system is a good,stable and reliable bio-robot.展开更多
The Chinese Area Positioning System (CAPS), a navigation system based on geostafionary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioni...The Chinese Area Positioning System (CAPS), a navigation system based on geostafionary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of a navigation constellation composed of slightly inclined geostationary orbit (SIGSO) communication satellites. SIGSO satellites are derived from GEO satellites which are near the end of their operational life by inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performance. A constellation composed of two GEO satellites and four SIGSO satellites with an inclination of 5° can provide service to most of the territory of China with a maximum position dilution of precision (PDOP) over 24 h of less than 42. With synthetic utilization of the truncated precise code and a physical augmentation factor in four frequencies, the navigation system with this constellation is expected to obtain comparable positioning performance to that of the coarse acquisition code of the Global Positioning System (GPS). When the new method of code-carrier phase combinations is adopted, the system has the potential to possess commensurate accuracy with the precise code in GPS. Additionally, the copious frequency resources can also be used to develop new anti-interference techniques and integrate navigation and communication.展开更多
A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing th...A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing the experiment data,the results show that the dye wastewater’s organic matter is removed greatly after be-ing treated by this new kind of bio-fluid bed.On the other hand,the removal efficiency of chromaticity of展开更多
Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of ...Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of biofilms in ground water remediation technology can be detrimental to the effectiveness of a ground water remediation project. Several alternatives are available to a remedial design engineer, such as Permeable Reactive Barriers (PRBs) and in -situ bioremediation, Hydrogen Releasing Compounds (HRCs) barrier, Oxygen Releasing Compounds (ORCs) barrier etc. which are efficient and cost- effective technologies. Excessive biomass formation renders a barrier ineffective in degrading the contaminants, Efforts are made to develop kinetics models which accurately determine bio - fouling and bio - filn formation and to control excessive biomass formation.展开更多
A bio-robot system refers to an animal equipped with Brain-Computer Interface (BCI), through which the outer stimulation is delivered directly into the animal's brain to control its behaviors. The development ofbio...A bio-robot system refers to an animal equipped with Brain-Computer Interface (BCI), through which the outer stimulation is delivered directly into the animal's brain to control its behaviors. The development ofbio-robots suffers from the dependency on real-time guidance by human operators. Because of its inherent difficulties, there is no feasible method for automatic con- trolling of bio-robots yet. In this paper, we propose a new method to realize the automatic navigation for bio-robots. A General Regression Neural Network (GRNN) is adopted to analyze and model the controlling procedure of human operations. Com- paring to the traditional approaches with explicit controlling rules, our algorithm learns the controlling process and imitates the decision-making of human-beings to steer the rat-robot automatically. In real-time navigation experiments, our method suc- cessfully controls bio-robots to follow given paths automatically and precisely. This work would be significant for future ap- plications of bio-robots and provide a new way to realize hybrid intelligent systems with artificial intelligence and natural biological intelligence combined together.展开更多
A radio-telemetry recording system is presented which is applied to stimulate specific brain areas and record neuronal ac- tivity in a free-roaming rat. The system consists of two major parts: stationary section and ...A radio-telemetry recording system is presented which is applied to stimulate specific brain areas and record neuronal ac- tivity in a free-roaming rat. The system consists of two major parts: stationary section and mobile section. The stationary section contains a laptop, a Micro Control Unit (MCU), an FM transmitter and a receiver. The mobile section is composed of the headstage and the backpack (which includes the mainboard, FM transmitter, and receiver), which can generate biphasic mi- crocurrent pulses and simultaneously acquire neuronal activity. Prior to performing experiments, electrodes are implanted in the Ventral Posterolateral (VPL) thalamic nucleus, primary motor area (M1) and Medial Forebrain Bundle (MFB) of the rat. The stationary section modulates commands from the laptop for stimulation and demodulates signals for neuronal activity recording. The backpack is strapped on the back of the rat and executes commands from the stationary section, acquires neuronal activity, and transmits the neuronal activity singles of the waking rat to the stationary section. All components in the proposed system are commercially available and are fabricated from Surface Mount Devices (SMD) in order to reduce the size (25 mm×15 mm ×2 mm) and weight (10 g with battery). During actual experiments, the backpack, which is powered by a rechargeable Lithium battery (4 g), can generate biphasic microcurrent pulse stimuli and can also record neuronal activity via the FM link with a maximum transmission rate of 1 kbps for more than one hour within a 200 m range in an open field or in a neighboring chamber. The test results show that the system is able to remotely navigate and control the rat without any prior training, and acquire neuronal activity with desirable features such as small size, low power consumption and high precision when compared with a commercial 4-channel bio-signal acquisition and processing system.展开更多
仿生偏振导航是近年来兴起的一种新原理导航方式,对天空光进行成像可以获得更为丰富的天空散射光的偏振信息以及分布特征,有利于提高偏振导航传感器的精度和抗干扰能力。根据现有的Stokes参量测量偏振光的原理以及成像装置的噪声模型,...仿生偏振导航是近年来兴起的一种新原理导航方式,对天空光进行成像可以获得更为丰富的天空散射光的偏振信息以及分布特征,有利于提高偏振导航传感器的精度和抗干扰能力。根据现有的Stokes参量测量偏振光的原理以及成像装置的噪声模型,对基于Stokes参量法的偏振角度测量噪声进行了建模,并根据模型进行了仿真分析。仿真结果表明:提高相机的信噪比(SNR)能够显著提高偏振成像的质量,当相机的SNR大于44 d B时,天空偏振角度的测量标准差将优于1°/像素;得到了0°,60°,120°和0°,45°,90°检偏器分布模式下对不同偏振角度的入射光测量噪声的统计分布特征。尽管0°,60°,120°的检偏器布置方案相对于0°,45°,90°的检偏器布置方案有着更大的计算复杂度,但在使用相同信噪比相机的情况下,该布置方案的噪声更小。该结论将对天空偏振光成像装置的构建及其误差分析与补偿技术提供参考。展开更多
基金supported by the National Natural Science Foundation of China(5137917651179156)
文摘This paper presents a bio-inspired geomagnetic navigation method for autonomous underwater vehicle(AUV) without using any a priori geomagnetic information. Firstly, the multi-objective search problem is raised. Secondly, the geomagnetic navigation model is established by constructing a cost function. Then, by taking into consideration the biological magneto-taxis movement behavior for the geomagnetic environment stimulus, the multiobjective evolutionary search algorithm is derived to describe the search process. Finally, compared to the state-of-the-art, the proposed method presents better robustness. The simulation results demonstrate the reliability and feasibility of the proposed method.
基金Sponsored by the National High Technology Research and Development Program(Grant No.2012AA12A209)the National Natural Science Foundation of China(Grant No.41174028,41374033)+2 种基金the Key Laboratory Development Fund from the Ministry of Education of China(Grant No.618-277176)the LIESMARS Special Research Fund,the Research Start-up Fund from Wuhan Univesity(Grant No.618-273438)the Fundamental Research Funds for the Central Universities(Grant No.201161802020002)
文摘GNSS( global navigation satellite systems) are unavailable in challenging environments such as urban canyon and indoor locations due to signal blocking and jamming. Camera / IMU( inertial measurement units) integrated navigation systems can be alternatives to GNSS. In this paper,a tightly coupled Camera / IMU algorithm modeled by IEKF( iterated extended kalman filter) is presented. This tight integration approach uses image generated pixel coordinates to update the Kalman Filter directly. The developed algorithm is verified by a hybrid simulation,i.e. using inertial data from field test to fuse with simulated image feature measurements. The results show that the tight approach is superior to the loose integration when the image measurements are insufficient( i.e. less than three ground control points).
基金supported by the Chinese National Natural Science Foundation(Grant No.30970883)the Fundamental Research Funds for the Central Universitiesties(Grant No.CDJRC10230012)chongqing University Innovation Fund(200801A1B0250284)
文摘A system is described here that can noninvasively control the navigation of freely behaving rat via ultrasonic,epidermaland LED photic stimulators on the back.The system receives commands from a remote host computer to deliver specifiedelectrical stimulations to the hearing,pain and visual senses of the rat respectively.The results demonstrate that the three stimuliwork in groups for the rat navigation.We can control the rat to proceed and make right and left turns with great efficiency.Thisexperiment verified that the rat was able to reach a setting destination in the way of cable with the help of a person through theappropriate coordination of the three stimulators.The telemetry video camera mounted on the head of the rat also achieveddistant image acquisition and helped to adjust its navigation path over a distance of 300 m.In a word,the non-invasive motioncontrol navigation system is a good,stable and reliable bio-robot.
基金carried out under the support of the National Basic Research Program of China (973 program, 2007CB815501)the Key Research Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-J01)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-EW-407-1)
文摘The Chinese Area Positioning System (CAPS), a navigation system based on geostafionary orbit (GEO) communication satellites, was developed in 2002 by astronomers at Chinese Academy of Sciences. Extensive positioning experiments of CAPS have been performed since 2005. On the basis of CAPS, this paper studies the principle of a navigation constellation composed of slightly inclined geostationary orbit (SIGSO) communication satellites. SIGSO satellites are derived from GEO satellites which are near the end of their operational life by inclined orbit operation. Considering the abundant frequency resources of SIGSO satellites, multi-frequency observations could be conducted to enhance the precision of pseudorange measurements and ameliorate the positioning performance. A constellation composed of two GEO satellites and four SIGSO satellites with an inclination of 5° can provide service to most of the territory of China with a maximum position dilution of precision (PDOP) over 24 h of less than 42. With synthetic utilization of the truncated precise code and a physical augmentation factor in four frequencies, the navigation system with this constellation is expected to obtain comparable positioning performance to that of the coarse acquisition code of the Global Positioning System (GPS). When the new method of code-carrier phase combinations is adopted, the system has the potential to possess commensurate accuracy with the precise code in GPS. Additionally, the copious frequency resources can also be used to develop new anti-interference techniques and integrate navigation and communication.
文摘A new kind of bio-fluid bed used to treat dyes wastewater is described in detail due to its several special features,such as high removal efficiency,simple struc-ture,shock load resistance,etc.By means of analyzing the experiment data,the results show that the dye wastewater’s organic matter is removed greatly after be-ing treated by this new kind of bio-fluid bed.On the other hand,the removal efficiency of chromaticity of
文摘Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of biofilms in ground water remediation technology can be detrimental to the effectiveness of a ground water remediation project. Several alternatives are available to a remedial design engineer, such as Permeable Reactive Barriers (PRBs) and in -situ bioremediation, Hydrogen Releasing Compounds (HRCs) barrier, Oxygen Releasing Compounds (ORCs) barrier etc. which are efficient and cost- effective technologies. Excessive biomass formation renders a barrier ineffective in degrading the contaminants, Efforts are made to develop kinetics models which accurately determine bio - fouling and bio - filn formation and to control excessive biomass formation.
基金the National Key Basic Research Program of China,the National Natural Science Foundation of China,the National High Technology Research and Development Program of China,the National Natural Science Foundation of China,the Fundamental Research Funds for the Central Universities
文摘A bio-robot system refers to an animal equipped with Brain-Computer Interface (BCI), through which the outer stimulation is delivered directly into the animal's brain to control its behaviors. The development ofbio-robots suffers from the dependency on real-time guidance by human operators. Because of its inherent difficulties, there is no feasible method for automatic con- trolling of bio-robots yet. In this paper, we propose a new method to realize the automatic navigation for bio-robots. A General Regression Neural Network (GRNN) is adopted to analyze and model the controlling procedure of human operations. Com- paring to the traditional approaches with explicit controlling rules, our algorithm learns the controlling process and imitates the decision-making of human-beings to steer the rat-robot automatically. In real-time navigation experiments, our method suc- cessfully controls bio-robots to follow given paths automatically and precisely. This work would be significant for future ap- plications of bio-robots and provide a new way to realize hybrid intelligent systems with artificial intelligence and natural biological intelligence combined together.
文摘A radio-telemetry recording system is presented which is applied to stimulate specific brain areas and record neuronal ac- tivity in a free-roaming rat. The system consists of two major parts: stationary section and mobile section. The stationary section contains a laptop, a Micro Control Unit (MCU), an FM transmitter and a receiver. The mobile section is composed of the headstage and the backpack (which includes the mainboard, FM transmitter, and receiver), which can generate biphasic mi- crocurrent pulses and simultaneously acquire neuronal activity. Prior to performing experiments, electrodes are implanted in the Ventral Posterolateral (VPL) thalamic nucleus, primary motor area (M1) and Medial Forebrain Bundle (MFB) of the rat. The stationary section modulates commands from the laptop for stimulation and demodulates signals for neuronal activity recording. The backpack is strapped on the back of the rat and executes commands from the stationary section, acquires neuronal activity, and transmits the neuronal activity singles of the waking rat to the stationary section. All components in the proposed system are commercially available and are fabricated from Surface Mount Devices (SMD) in order to reduce the size (25 mm×15 mm ×2 mm) and weight (10 g with battery). During actual experiments, the backpack, which is powered by a rechargeable Lithium battery (4 g), can generate biphasic microcurrent pulse stimuli and can also record neuronal activity via the FM link with a maximum transmission rate of 1 kbps for more than one hour within a 200 m range in an open field or in a neighboring chamber. The test results show that the system is able to remotely navigate and control the rat without any prior training, and acquire neuronal activity with desirable features such as small size, low power consumption and high precision when compared with a commercial 4-channel bio-signal acquisition and processing system.
文摘仿生偏振导航是近年来兴起的一种新原理导航方式,对天空光进行成像可以获得更为丰富的天空散射光的偏振信息以及分布特征,有利于提高偏振导航传感器的精度和抗干扰能力。根据现有的Stokes参量测量偏振光的原理以及成像装置的噪声模型,对基于Stokes参量法的偏振角度测量噪声进行了建模,并根据模型进行了仿真分析。仿真结果表明:提高相机的信噪比(SNR)能够显著提高偏振成像的质量,当相机的SNR大于44 d B时,天空偏振角度的测量标准差将优于1°/像素;得到了0°,60°,120°和0°,45°,90°检偏器分布模式下对不同偏振角度的入射光测量噪声的统计分布特征。尽管0°,60°,120°的检偏器布置方案相对于0°,45°,90°的检偏器布置方案有着更大的计算复杂度,但在使用相同信噪比相机的情况下,该布置方案的噪声更小。该结论将对天空偏振光成像装置的构建及其误差分析与补偿技术提供参考。