期刊文献+
共找到20,865篇文章
< 1 2 250 >
每页显示 20 50 100
Model reduction of fractional impedance spectra for time–frequency analysis of batteries, fuel cells, and supercapacitors 被引量:1
1
作者 Weiheng Li Qiu-An Huang +6 位作者 Yuxuan Bai Jia Wang Linlin Wang Yuyu Liu Yufeng Zhao Xifei Li Jiujun Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期108-141,共34页
Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlatio... Joint time–frequency analysis is an emerging method for interpreting the underlying physics in fuel cells,batteries,and supercapacitors.To increase the reliability of time–frequency analysis,a theoretical correlation between frequency-domain stationary analysis and time-domain transient analysis is urgently required.The present work formularizes a thorough model reduction of fractional impedance spectra for electrochemical energy devices involving not only the model reduction from fractional-order models to integer-order models and from high-to low-order RC circuits but also insight into the evolution of the characteristic time constants during the whole reduction process.The following work has been carried out:(i)the model-reduction theory is addressed for typical Warburg elements and RC circuits based on the continued fraction expansion theory and the response error minimization technique,respectively;(ii)the order effect on the model reduction of typical Warburg elements is quantitatively evaluated by time–frequency analysis;(iii)the results of time–frequency analysis are confirmed to be useful to determine the reduction order in terms of the kinetic information needed to be captured;and(iv)the results of time–frequency analysis are validated for the model reduction of fractional impedance spectra for lithium-ion batteries,supercapacitors,and solid oxide fuel cells.In turn,the numerical validation has demonstrated the powerful function of the joint time–frequency analysis.The thorough model reduction of fractional impedance spectra addressed in the present work not only clarifies the relationship between time-domain transient analysis and frequency-domain stationary analysis but also enhances the reliability of the joint time–frequency analysis for electrochemical energy devices. 展开更多
关键词 battery fuel cell supercapacitor fractional impedance spectroscopy model reduction time-frequency analysis
下载PDF
Novel method for identifying the stages of discharge underwater based on impedance change characteristic
2
作者 高崇 康忠健 +3 位作者 龚大建 张扬 王玉芳 孙一鸣 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第4期133-145,共13页
It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel... It is difficult to determine the discharge stages in a fixed time of repetitive discharge underwater due to the arc formation process being susceptible to external environmental influences. This paper proposes a novel underwater discharge stage identification method based on the Strong Tracking Filter(STF) and impedance change characteristics. The time-varying equivalent circuit model of the discharge underwater is established based on the plasma theory analysis of the impedance change characteristics and mechanism of the discharge process. The STF is used to reduce the randomness of the impedance of repeated discharges underwater, and then the universal identification resistance data is obtained. Based on the resistance variation characteristics of the discriminating resistance of the pre-breakdown, main, and oscillatory discharge stages, the threshold values for determining the discharge stage are obtained. These include the threshold values for the resistance variation rate(K) and the moment(t).Experimental and error analysis results demonstrate the efficacy of this innovative method in discharge stage determination, with a maximum mean square deviation of Scrless than 1.761. 展开更多
关键词 discharge underwater discharge stage identification impedance characteristics strong tracking filter
下载PDF
Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na_(2)O–V_(2)O_(5)–Nb_(2)O_(5)–P_(2)O_(5) glass
3
作者 Sara Marijan Luka Pavic 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期186-196,共11页
Solid-state impedance spectroscopy(SS-IS)was used to investigate the influence of structural modifications resulting from the addition of Nb2O5 on the dielectric properties and relaxation processes in the quaternary m... Solid-state impedance spectroscopy(SS-IS)was used to investigate the influence of structural modifications resulting from the addition of Nb2O5 on the dielectric properties and relaxation processes in the quaternary mixed glass former(MGF)system 35Na_(2)O–10V_(2)O_(5)–(55-x)P_(2)O_(5)–xNb_(2)O_(5)(x=0–40,mol%).The dielectric parameters,including the dielectric strength and dielectric loss,are determined from the frequency and temperature-dependent complex permittivity data,revealing a significant dependence on the Nb2O5 content.The transition from a predominantly phosphate glass network(x<10,region I)to a mixed niobate–phosphate glass net-work(10≤x≤20,region II)leads to an increase in the dielectric parameters,which correlates with the observed trend in the direct-cur-rent(DC)conductivity.In the predominantly niobate network(x≥25,region III),the highly polarizable nature of Nb5+ions leads to a fur-ther increase in the dielectric permittivity and dielectric strength.This is particularly evident in Nb-40 glass-ceramic,which contains Na_(13)Nb_(35)O_(94) crystalline phase with a tungsten bronze structure and exhibits the highest dielectric permittivity of 61.81 and the lowest loss factor of 0.032 at 303 K and 10 kHz.The relaxation studies,analyzed through modulus formalism and complex impedance data,show that DC conductivity and relaxation processes are governed by the same mechanism,attributed to ionic conductivity.In contrast to glasses with a single peak in frequency dependence of imaginary part of electrical modulus,M″(ω),Nb-40 glass-ceramic exhibits two distinct contributions with similar relaxation times.The high-frequency peak indicates bulk ionic conductivity,while the additional low-fre-quency peak is associated with the grain boundary effect,confirmed by the electrical equivalent circuit(EEC)modelling.The scaling characteristics of permittivity and conductivity spectra,along with the electrical modulus,validate time-temperature superposition and demonstrate a strong correlation with composition and modification of the glass structure upon Nb_(2)O_(5) incorporation. 展开更多
关键词 phosphate glasses GLASS-CERAMICS impedance spectroscopy dielectric properties relaxation processes permittivity scaling conductivity scaling modulus formalism
下载PDF
Statistical Inversion Based on Nonlinear Weighted Anisotropic Total Variational Model and Its Application in Electrical Impedance Tomography
4
作者 Pengfei Qi 《Engineering(科研)》 2024年第1期1-7,共7页
Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to... Electrical impedance tomography (EIT) aims to reconstruct the conductivity distribution using the boundary measured voltage potential. Traditional regularization based method would suffer from error propagation due to the iteration process. The statistical inverse problem method uses statistical inference to estimate unknown parameters. In this article, we develop a nonlinear weighted anisotropic total variation (NWATV) prior density function based on the recently proposed NWATV regularization method. We calculate the corresponding posterior density function, i.e., the solution of the EIT inverse problem in the statistical sense, via a modified Markov chain Monte Carlo (MCMC) sampling. We do numerical experiment to validate the proposed approach. 展开更多
关键词 Statistical Inverse Problem Electrical impedance Tomography NWATV Prior Markov Chain Monte Carlo Sampling
下载PDF
Semi-supervised estimation of capacity degradation for lithium ion batteries with electrochemical impedance spectroscopy 被引量:1
5
作者 Rui Xiong Jinpeng Tian +2 位作者 Weixiang Shen Jiahuan Lu Fengchun Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期404-413,I0010,共11页
Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems.However,they are generally developed in a supervised manner which requires a c... Machine learning-based methods have emerged as a promising solution to accurate battery capacity estimation for battery management systems.However,they are generally developed in a supervised manner which requires a considerable number of input features and corresponding capacities,leading to prohibitive costs and efforts for data collection.In response to this issue,this study proposes a convolutional neural network(CNN)based method to perform end-to-end capacity estimation by taking only raw impedance spectra as input.More importantly,an input reconstruction module is devised to effectively exploit impedance spectra without corresponding capacities in the training process,thereby significantly alleviating the cost of collecting training data.Two large battery degradation datasets encompassing over 4700 impedance spectra are developed to validate the proposed method.The results show that accurate capacity estimation can be achieved when substantial training samples with measured capacities are given.However,the estimation performance of supervised machine learning algorithms sharply deteriorates when fewer samples with measured capacities are available.In this case,the proposed method outperforms supervised benchmarks and can reduce the root mean square error by up to 50.66%.A further validation under different current rates and states of charge confirms the effectiveness of the proposed method.Our method provides a flexible approach to take advantage of unlabelled samples for developing data-driven models and is promising to be generalised to other battery management tasks. 展开更多
关键词 Lithium-ion battery Capacity degradation Electrochemical impedance spectroscopy Deep learning
下载PDF
Vertical impedance functions of pile groups under low-to-high loading amplitudes:numerical simulations and experimental validation 被引量:1
6
作者 Usama Zafar Chandra Shekhar Goit +1 位作者 Masato Saitoh Riku Fukuda 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期647-666,共20页
Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elasti... Piles in a group experience additional displacements in soil due to pile-to-pile interactions apart from those resulting from the external loading.The effect of these interactions determined assuming soil as an elastic and/or viscoelastic material on pile head impedance functions of the pile group is studied by relating the group stiffness to the static stiffness of a single pile.However,the prevailing elastic solutions may misestimate the resulting pile group response due to the lack of consideration for either soil(material)and/or soil-pile interface nonlinearities.It is well established that soil behaves nonlinearly under moderate-to-high loading amplitudes,and besides,the soil-pile interface nonlinearity can exist even at small loading amplitudes.This study addresses the effects of these nonlinearities on the vertical impedance functions of a 3×3-pile group using numerical methods by direct analyses and superposition using pile-to-pile interaction factors.The numerical results are validated using scaled model tests under 1 g conditions.The results highlight the overestimation of pile-to-pile interactions in the pile group when assuming elastic soil conditions.The cases either by direct analyses or superposition approach involving soil and soil-pile interface nonlinearities agree well with the experimental pile group responses under close-to-elastic and nonlinear conditions. 展开更多
关键词 impedance functions numerical simulations model-scale experiment superposition approach soil-pile interface nonlinearity
下载PDF
Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model 被引量:1
7
作者 黄仕杰 刘毅 +5 位作者 赵勇 徐尤来 林福昌 李化 张钦 李柳霞 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第6期52-64,共13页
High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform wa... High-voltage pulse discharge(HVPD)rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters,electrode type,etc.In this work,an HVPD rock fragmentation test platform was built and the test waveforms were measured.Considering the effects of temperature,channel expansion and electromagnetic radiation,the impedance model of the plasma channel in the rock was established.The parameters and initial values of the model were determined by an iterative computational process.The model calculation results can reasonably characterize the development of the plasma channel in the rock and estimate the shock wave characteristics.Based on the plasma channel impedance model,the temporal and spatial distribution characteristics of the radial stress and tangential stress in the rock were calculated,and the rock fragmentation effect of the HVPD was analyzed. 展开更多
关键词 stress wave shock wave plasma channel impedance model rock fragmentation high-voltage pulse discharge
下载PDF
High impedance fault detection in distribution network based on S-transform and average singular entropy 被引量:1
8
作者 Xiaofeng Zeng Wei Gao Gengjie Yang 《Global Energy Interconnection》 EI CAS CSCD 2023年第1期64-80,共17页
When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform... When a high impedance fault(HIF)occurs in a distribution network,the detection efficiency of traditional protection devices is strongly limited by the weak fault information.In this study,a method based on S-transform(ST)and average singular entropy(ASE)is proposed to identify HIFs.First,a wavelet packet transform(WPT)was applied to extract the feature frequency band.Thereafter,the ST was investigated in each half cycle.Afterwards,the obtained time-frequency matrix was denoised by singular value decomposition(SVD),followed by the calculation of the ASE index.Finally,an appropriate threshold was selected to detect the HIFs.The advantages of this method are the ability of fine band division,adaptive time-frequency transformation,and quantitative expression of signal complexity.The performance of the proposed method was verified by simulated and field data,and further analysis revealed that it could still achieve good results under different conditions. 展开更多
关键词 High impedance fault(HIF) Wavelet packet transform(WPT) S-transform(ST) Singular entropy(SE)
下载PDF
Human-Robot Collaboration Framework Based on Impedance Control in Robotic Assembly
9
作者 Xingwei Zhao Yiming Chen +2 位作者 Lu Qian Bo Tao Han Ding 《Engineering》 SCIE EI CAS CSCD 2023年第11期83-92,共10页
Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.I... Human–robot(HR)collaboration(HRC)is an emerging research field because of the complementary advantages of humans and robots.An HRC framework for robotic assembly based on impedance control is proposed in this paper.In the HRC framework,the human is the decision maker,the robot acts as the executor,while the assembly environment provides constraints.The robot is the main executor to perform the assembly action,which has the position control,drag and drop,positive impedance control,and negative impedance control modes.To reveal the characteristics of the HRC framework,the switch condition map of different control modes and the stability analysis of the HR coupled system are discussed.In the end,HRC assembly experiments are conducted,where the HRC assembly task can be accomplished when the assembling tolerance is 0.08 mm or with the interference fit.Experiments show that the HRC assembly has the complementary advantages of humans and robots and is efficient in finishing complex assembly tasks. 展开更多
关键词 Human-robot collaboration impedance control Robotic assembly
下载PDF
Early Debonding Detection of Rebar-Concrete Interface due to External Loading Utilizing AC Impedance Spectroscopy
10
作者 WU Lipeng YANG Haitao DONG Xian 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第2期381-386,共6页
A novel method for detecting early damage at the steel-concrete interface due to external loading based on AC impedance spectroscopy technology was proposed.Firstly,alkali pretreatment was introduced to ensure the acc... A novel method for detecting early damage at the steel-concrete interface due to external loading based on AC impedance spectroscopy technology was proposed.Firstly,alkali pretreatment was introduced to ensure the accuracy and repeatability of the AC impedance test.Secondly,the AC impedance spectroscopy between the steel bar and concrete surface of different bonding positions was tested,and then the physical quantities reflecting the bonding damage condition were obtained by equivalent circuit fitting.Theoretical debonding position calculation and AC conductive structure analysis indicate that the change of interface resistance and interface capacitance can seize the development of bonding damage during the loading process.As the interface damage develops,obvious changes in interface resistance and interface capacitance are observed,and they cannot be recovered after unloading. 展开更多
关键词 concrete bond AC impedance spectroscopy equivalent circuit model DAMAGE
下载PDF
Battery impedance spectrum prediction from partial charging voltage curve by machine learning
11
作者 Jia Guo Yunhong Che +1 位作者 Kjeld Pedersen Daniel-Ioan Stroe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期211-221,共11页
Electrochemical impedance spectroscopy(EIS) is an effective technique for Lithium-ion battery state of health diagnosis, and the impedance spectrum prediction by battery charging curve is expected to enable battery im... Electrochemical impedance spectroscopy(EIS) is an effective technique for Lithium-ion battery state of health diagnosis, and the impedance spectrum prediction by battery charging curve is expected to enable battery impedance testing during vehicle operation. However, the mechanistic relationship between charging curves and impedance spectrum remains unclear, which hinders the development as well as optimization of EIS-based prediction techniques. In this paper, we predicted the impedance spectrum by the battery charging voltage curve and optimized the input based on electrochemical mechanistic analysis and machine learning. The internal electrochemical relationships between the charging curve,incremental capacity curve, and the impedance spectrum are explored, which improves the physical interpretability for this prediction and helps define the proper partial voltage range for the input for machine learning models. Different machine learning algorithms have been adopted for the verification of the proposed framework based on the sequence-to-sequence predictions. In addition, the predictions with different partial voltage ranges, at different state of charge, and with different training data ratio are evaluated to prove the proposed method have high generalization and robustness. The experimental results show that the proper partial voltage range has high accuracy and converges to the findings of the electrochemical analysis. The predicted errors for impedance spectrum are less than 1.9 mΩ with the proper partial voltage range selected by the corelative analysis of the electrochemical reactions inside the batteries. Even with the voltage range reduced to 3.65–3.75 V, the predictions are still reliable with most RMSEs less than 4 mO. 展开更多
关键词 impedance spectrum prediction Lithium-ion battery Machine learning EIS Graphite anode
下载PDF
Understanding Lithium-ion Transport in Sulfolane- and Tetraglyme-Based Electrolytes Using Very Low-Frequency Impedance Spectroscopy
12
作者 Janet SHo Oleg A.Borodin +4 位作者 Michael SDing Lin Ma Marshall A.Schroeder Glenn R.Pastel Kang Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期368-376,共9页
With the increasing interest in highly concentrated electrolyte systems,correct determination of the cation transference number is important.Pulsed-field gradient NMR technique,which measures self-diffusion coefficien... With the increasing interest in highly concentrated electrolyte systems,correct determination of the cation transference number is important.Pulsed-field gradient NMR technique,which measures self-diffusion coefficients,is often applied on liquid electrolytes because of the wide accessibility and simple sample preparation.However,since the assumptions of this technique,that is,complete salt dissociation,all ions participating in motion,and all of them moving independently,no longer hold true in concentrated solutions,the transference numbers,thus obtained are often over-estimated.In the present work,impedance spectroscopy at a frequency range of 1 MHz to 0.1 mHz was used to examine the concentration effect on lithium-ion transference number under anion-blocking conditions T abc Liþfor two electrolytes:lithium bis(fluorosulfonyl)imide(LiFSI)in sulfolane(SL)and lithium bis(trifluorosulfonyl)imide(LiTFSI)in tetraglyme(G4).The T abc Liþof the former was almost an order of magnitude higher than that of the latter.It also appeared to increase with increasing concentration while the latter followed an opposite trend.The faster Li^(+)transport in the SL system is attributed to the formation of a liquid structure consisting of extended chains/bridges of SL molecules and the anions,which facilitate a cation-hopping/ligand-exchanged-typed diffusion mechanism by partially decoupling the cations from the anions and solvent molecules.The G4 system,in contrast,is dominated by the formation of long-lived,stable[Li(G4)]+solvation cages that results in a sluggish Li+transport.The difference between the two transport mechanisms is discussed via comparison of the bulk ionic conductivity,viscosity,ion self-diffusion coefficients,and the Onsager transport coefficients. 展开更多
关键词 anion-blocking conditions ion correlations low-frequency impedance spectroscopy transference number
下载PDF
Study of the axial density/impedance gradient composite long rod hypervelocity penetration into a four-layer Q345 target
13
作者 Na Feng Kun Ma +5 位作者 Chunlin Chen Lixin Yin Mingrui Li Zhihua Nie Gang Zhou Chengwen Tan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第10期314-329,共16页
Based on the dynamic shock response of the material and structure,the hypervelocity impact processes and mechanisms of long composite rods with axial density/impedance gradients penetration into fourlayer targets were... Based on the dynamic shock response of the material and structure,the hypervelocity impact processes and mechanisms of long composite rods with axial density/impedance gradients penetration into fourlayer targets were studied through experiments and numerical simulation methods.The propagation law of the shock waves,together with the structural responses of the projectiles and targets,the formation and evolution of the fragment groups formed during the processes and their distributions were described.The damage of each target plate was quantitatively analysed by comparing the results of the experiment and numerical simulation.The results showed that the axial density/impedance gradient projectiles could decrease the impact pressure to a certain extent,and the degree of damage to the target plate decreased layer by layer when the head density/impedance of the projectile was high.When the head density/impedance of the projectile was low,the degree of target damage first increased layer by layer until the projectile was completely eroded and then it decreased.The results can provide a reference for the design and application of long rods with axial composite structure for velocities ranging from 6 to 10 Ma or greater. 展开更多
关键词 HYPERVELOCITY Density/impedance gradient Axial composite rod Penetration mechanism
下载PDF
Impedance spectroscopy for quantum dot light-emitting diodes
14
作者 Xiangwei Qu Xiaowei Sun 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期26-38,共13页
Impedance spectroscopy has been increasingly employed in quantum dot light-emitting diodes(QLEDs)to investigate the charge dynamics and device physics.In this review,we introduce the mathematical basics of impedance s... Impedance spectroscopy has been increasingly employed in quantum dot light-emitting diodes(QLEDs)to investigate the charge dynamics and device physics.In this review,we introduce the mathematical basics of impedance spectroscopy that applied to QLEDs.In particular,we focus on the Nyquist plot,Mott-Schottky analysis,capacitance-frequency and capacitance-voltage characteristics,and the d C/d V measurement of the QLEDs.These impedance measurements can provide critical information on electrical parameters such as equivalent circuit models,characteristic time constants,charge injection and recombination points,and trap distribution of the QLEDs.However,this paper will also discuss the disadvantages and limitations of these measurements.Fundamentally,this review provides a deeper understanding of the device physics of QLEDs through the application of impedance spectroscopy,offering valuable insights into the analysis of performance loss and degradation mechanisms of QLEDs. 展开更多
关键词 quantum dot light-emitting diode impedance spectroscopy equivalent circuit model charge dynamics
下载PDF
Model-constrained and data-driven double-supervision acoustic impedance inversion
15
作者 Dong-Feng Zhao Na-Xia Yang +2 位作者 Jin-Liang Xiong Guo-Fa Li Shu-Wen Guo 《Petroleum Science》 SCIE EI CSCD 2023年第5期2809-2821,共13页
Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geoph... Seismic impedance inversion is an important technique for structure identification and reservoir prediction.Model-based and data-driven impedance inversion are the commonly used inversion methods.In practice,the geophysical inversion problem is essentially an ill-posedness problem,which means that there are many solutions corresponding to the same seismic data.Therefore,regularization schemes,which can provide stable and unique inversion results to some extent,have been introduced into the objective function as constrain terms.Among them,given a low-frequency initial impedance model is the most commonly used regularization method,which can provide a smooth and stable solution.However,this model-based inversion method relies heavily on the initial model and the inversion result is band limited to the effective frequency bandwidth of seismic data,which cannot effectively improve the seismic vertical resolution and is difficult to be applied to complex structural regions.Therefore,we propose a data-driven approach for high-resolution impedance inversion based on the bidirectional long short-term memory recurrent neural network,which regards seismic data as time-series rather than image-like patches.Compared with the model-based inversion method,the data-driven approach provides higher resolution inversion results,which demonstrates the effectiveness of the data-driven method for recovering the high-frequency components.However,judging from the inversion results for characterization the spatial distribution of thin-layer sands,the accuracy of high-frequency components is difficult to guarantee.Therefore,we add the model constraint to the objective function to overcome the shortages of relying only on the data-driven schemes.First,constructing the supervisor1 based on the bidirectional long short-term memory recurrent neural network,which provides the predicted impedance with higher resolution.Then,convolution constraint as supervisor2 is introduced into the objective function to guarantee the reliability and accuracy of the inversion results,which makes the synthetic seismic data obtained from the inversion result consistent with the input data.Finally,we test the proposed scheme based on the synthetic and field seismic data.Compared to model-based and purely data-driven impedance inversion methods,the proposed approach provides more accurate and reliable inversion results while with higher vertical resolution and better spatial continuity.The inversion results accurately characterize the spatial distribution relationship of thin sands.The model tests demonstrate that the model-constrained and data-driven impedance inversion scheme can effectively improve the thin-layer structure characterization based on the seismic data.Moreover,tests on the oil field data indicate the practicality and adaptability of the proposed method. 展开更多
关键词 Acoustic impedance inversion Model constraints Double supervision BiLSTM neural network Reservoir structure characterization
下载PDF
Prediction of fuel cell performance degradation using a combined approach of machine learning and impedance spectroscopy
16
作者 Zewei Lyu Yige Wang +6 位作者 Anna Sciazko Hangyue Li Yosuke Komatsu Zaihong Sun Kaihua Sun Naoki Shikazono Minfang Han 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期32-41,I0003,共11页
Accurate prediction of performance degradation in complex systems such as solid oxide fuel cells is crucial for expediting technological advancements.However,significant challenges still persist due to limited compreh... Accurate prediction of performance degradation in complex systems such as solid oxide fuel cells is crucial for expediting technological advancements.However,significant challenges still persist due to limited comprehension of degradation mechanisms and difficulties in acquiring in-situ features.In this study,we propose an effective approach that integrates long short-term memory(LSTM) neural network and dynamic electrochemical impedance spectroscopy(DEIS).This integrated approach enables precise prediction of future evolutions in both current-voltage and EIS features using historical testing data,without prior knowledge of degradation mechanisms.For short-term predictions spanning hundreds of hours,our approach achieves a prediction accuracy exceeding 0.99,showcasing promising prospects for diagnostic applications.Additionally,for long-term predictions spanning thousands of hours,we quantitatively determine the significance of each degradation mechanism,which is crucial for enhancing cell durability.Moreover,our proposed approach demonstrates satisfactory predictive ability in both time and frequency domains,offering the potential to reduce EIS testing time by more than half. 展开更多
关键词 Solid oxide fuel cell Performance degradation Electrochemical impedance spectroscopy Longshort-term memory Machine learning
下载PDF
Longitudinal impedance measurements and simulations of a three-metal-strip kicker
17
作者 Jin-Liu Su Yu-Dong Liu +3 位作者 Sai-Ke Tian Lei Wang Na Wang Sen Yue 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第4期115-126,共12页
A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider ... A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider (BEPCII). However, the ceramic slat kicker has experienced several sudden malfunctions during the operation of the BEPCII in the past. With a reliable kicker structure, a three-metal-strip kicker can substitute the original ceramic slat kicker to maintain the operational stability of the BEPCII. A comparison of the numerical simulation was conducted for three kicker models, demonstrating the comprehensive advantage of the three-metal-strip kicker. Furthermore, impedance bench measurements were conducted on a prototype of a three-metal-strip kicker. The longitudinal beam-coupling impedance was measured using a vector network analyzer via the coaxial wire method. A satisfactory agreement was obtained between the numerical simulations and measurements. Based on the numerical simulation data, the loss factor was 0.01721 V/pC, and the effective impedance was 3.59 mΩ(σ=10 mm).The simulation of the heat deposition on each part of the kicker demonstrated that 84.4%of the parasitic loss of the beam was deposited on the metal strips, and the total heat deposition power on the kicker was between 113.3 and 131.5 W. The obtained heat deposition powers can be considered as a reference for establishing the cooling system. 展开更多
关键词 Ceramic slat kicker Three-metal-strip kicker impedance bench measurement Coaxial wire method Heat deposition power
下载PDF
Harmonic State-Space Based AC-Side Impedance Model of MMC and High Frequency Oscillation Characteristics Analysis
18
作者 Hui Fang Jingsen Zhou +3 位作者 Haozheng Wang Yanxu Wang Hongji Xiang Yechun Xin 《Energy Engineering》 EI 2023年第4期831-849,共19页
Recently,high-frequency oscillation of themodularmultilevel converter(MMC)based high-voltage direct current(HVDC)projects has attracted great attentions.In order to analyze the small-signal stability,this paper uses t... Recently,high-frequency oscillation of themodularmultilevel converter(MMC)based high-voltage direct current(HVDC)projects has attracted great attentions.In order to analyze the small-signal stability,this paper uses the harmonic state-space(HSS)method to establish a detailed frequency domain impedance model of the AC-side of the HVDC transmission system,which considers the internal dynamic characteristics.In addition,the suggested model is also used to assess the system’s high-frequency oscillationmechanism,and the effects of the MMC current inner loop control,feedforward voltage links,and control delay on the high-frequency impedance characteristics and the effect of higher harmonic components.Finally,three oscillation suppression schemes are analyzed for the oscillation problems occurring in actual engineering,and a simplified impedance model considering only the highfrequency impedance characteristics is established to compare the suppression effect with the detailed impedance model to prove its reliability. 展开更多
关键词 Modular multilevel converter impedance modeling small-signal stability suppression strategy
下载PDF
Analysis of Capacity Decay, Impedance, and Heat Generation of Lithium-ionBatteries Experiencing Multiple Simultaneous Abuse Conditions
19
作者 Casey Jones Meghana Sudarshan Vikas Tomar 《Energy Engineering》 EI 2023年第12期2721-2740,共20页
Abuse of Lithium-ion batteries,both physical and electrochemical,can lead to significantly reduced operational capabilities.In some instances,abuse can cause catastrophic failure,including thermal runaway,combustion,a... Abuse of Lithium-ion batteries,both physical and electrochemical,can lead to significantly reduced operational capabilities.In some instances,abuse can cause catastrophic failure,including thermal runaway,combustion,and explosion.Many different test standards that include abuse conditions have been developed,but these generally consider only one condition at a time and only provide go/no-go criteria.In this work,different types of cell abuse are implemented concurrently to determine the extent to which simultaneous abuse conditions aggravate cell degradation and failure.Vibrational loading is chosen to be the consistent type of physical abuse,and the first group of cells is cycled at different vibrational frequencies.The next group of cells is cycled at the same frequencies,with multiple charge pulses occurring during each discharge.The final group of cells is cycled at the same frequencies,with a partial nail puncture occurring near the beginning of cycling.The results show that abusing cells with vibrational loading or vibrational loading with current pulses does not cause a significant decrease in operational capabilities while abusing cells with vibrational loading and a nail puncture drastically reduces operational capabilities.The cells with vibration only experience an increase in internal resistance by a factor of 1.09–1.26,the cells with vibration and current pulses experience an increase in internal resistance by a factor of 1.16–1.23,and all cells from each group reach their rated lifetime of 500 cycles without reaching their end-of-life capacity.However,the cells with vibration and nail puncture experience an increase in internal resistance by a factor of 6.83–22.1,and each cell reaches its end-of-life capacity within 50 cycles.Overall,the results show that testing multiple abuse conditions simultaneously provides a better representation of the extreme limitations of cell operation and should be considered for inclusion in reference test standards. 展开更多
关键词 Lithium-ion batteries dynamic abuse testing electrochemical impedance spectroscopy incremental capacity analysis thermal profile analysis
下载PDF
Nonlinear Electrical Impedance Tomography Method Using a Complete Electrode Model for the Characterization of Heterogeneous Domains
20
作者 Jeongwoo Park Bong-Gu Jung Jun Won Kang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期1707-1735,共29页
This paper presents an electrical impedance tomography(EIT)method using a partial-differential-equationconstrained optimization approach.The forward problem in the inversion framework is described by a complete electr... This paper presents an electrical impedance tomography(EIT)method using a partial-differential-equationconstrained optimization approach.The forward problem in the inversion framework is described by a complete electrodemodel(CEM),which seeks the electric potential within the domain and at surface electrodes considering the contact impedance between them.The finite element solution of the electric potential has been validated using a commercial code.The inverse medium problem for reconstructing the unknown electrical conductivity profile is formulated as an optimization problem constrained by the CEM.The method seeks the optimal solution of the domain’s electrical conductivity to minimize a Lagrangian functional consisting of a least-squares objective functional and a regularization term.Enforcing the stationarity of the Lagrangian leads to state,adjoint,and control problems,which constitute the Karush-Kuhn-Tucker(KKT)first-order optimality conditions.Subsequently,the electrical conductivity profile of the domain is iteratively updated by solving the KKT conditions in the reduced space of the control variable.Numerical results show that the relative error of the measured and calculated electric potentials after the inversion is less than 1%,demonstrating the successful reconstruction of heterogeneous electrical conductivity profiles using the proposed EIT method.This method thus represents an application framework for nondestructive evaluation of structures and geotechnical site characterization. 展开更多
关键词 Electrical impedance tomography complete electrode model inverse medium problem Karush-Kuhn-Tucker(KKT)optimality conditions nondestructive evaluation of structures
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部