Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(U...Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(UG)resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization.This results in a poorer bonding performance and water resistance of UG resins.A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization,and then to condense these with glyoxal to obtain a novel UG resin.Therefore,in this present work,the urea was reacted with hexamethylene diamine to form a polyurea named HU,and then this was used to react it with different amounts of glyoxal to synthesize hexamethylenediamine-urea-glyoxal(HUG)polycondensation resins,and to use this for bonding plywood.The results show that the glyoxal can well react with HU polyuria via addition and schiff base reaction,and also the HUG resin exhibits excellent bonding strength and water resistance.The shear strength of the plywood bonded with this HUG at 160°C hot press temperature as high as 1.93 MPa,2.16 MPa and 1.61 MPa,respectively,which meets the requirement of the China national standard GB/T 9846-2015(≥0.7 MPa),and can be a good choice as a wood adhesive for industrial application.展开更多
This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF...This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF analysis of the reaction of the MUF resin with citric acid.The preliminary results of the physical and mechanical properties of the LVL prepared are also presented.Veneers from Populus sp were used to manufacture 5-layer laminated veneer lumber(LVL)of small dimensions.Five combinations of the amount of citric acid,MUF spread rate and pressing parameters were tested.LVL bonded with 20%of citric acid+100 g/m^(2)of MUF,hot-pressed using a 3-step process with maximum 1.5 MPa of pressure yielded the board with better dimensional stability and mechanical properties.It could be concluded that citric acid in combination with MUF can be used for bonding wood veneer and the research should be continued to study further the parameters involved and to enhance the results.展开更多
Epoxy resin (EPR) was used to crosslink with Camellia oleifera Abel.protein to prepare wood adhesive,and the bonding performance and curing characteristics of which were mainly investigated,and the synthesis mechanism...Epoxy resin (EPR) was used to crosslink with Camellia oleifera Abel.protein to prepare wood adhesive,and the bonding performance and curing characteristics of which were mainly investigated,and the synthesis mechanism was also discussed by using model compounds.The experimental results show that EPR can significantly improve the bonding performance of Camellia oleifera Abel.protein-based adhesive,and the maximum of which reaches 0.72 MPa satisfies the strength requirement of Type II plywood in GB/T 17657-2013.After alkali treatment,the protein can more easily crosslink with EPR at low curing temperature,and the adhesive has high degree of crystallinity of curing products,high degree of crosslinking reaction,and high bonding strength.The reaction mechanism of EPR-modified Camellia oleifera Abel.protein adhesive can be divided into resinification phase and curing phase.展开更多
To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content chan...To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.展开更多
White spot infiltration emerged as an alternative of non-invasive treatment to halt progression of the lesion, through the use of low viscosity resins that would permeate the porous enamel and form a physical barrier ...White spot infiltration emerged as an alternative of non-invasive treatment to halt progression of the lesion, through the use of low viscosity resins that would permeate the porous enamel and form a physical barrier that would prevent the acid diffusion produced by micro-organisms. Purpose: To compare penetration levels in artificial white spot lesions, of infiltrant resin ICON™and 2 conventional adhesives systems, XP-Bond™and Single Bond 2™. Methodology: White spot lesions (ICDAS code 2) were caused in 75 premolars or third molars were extracted in good conditions, by immersion in a 0.1 M lactic acid solution (pH 4.5) at 37℃ for 8 weeks. They were divided randomly into 3 groups of 25 samples and applied the following resins, Group A: ICON™, B: XP-Bond™and C: Single Bond 2™. Subsequently, the enamel was removed with hydrochloric acid to expose resin saturated area and the samples were metalized with Au-Pd for SEM observation. The resin tags lengths were measured on microphotographs through software, and the values were analyzed with the statistics ANOVA and Scheffé post-test. Results: There were significant differences (p ™(82.7 μm ± 26.8 μm) compared to adhesive systems XP-Bond™(58.5 μm ± 29.3 μm) and Single Bond 2™(44.8 μm ± 32.5 μm). We found no significant differences between the two adhesive systems (p > 0.05). Conclusion: Under the conditions tested, the penetration of infiltrant ICON was significantly higher than the adhesive systems;however, it removes the surface layer of the enamel.展开更多
We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experime...We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experimental results show that the addition of BSi in the silicone rubber(SR)system significantly increases the tensile shear strength between BSi and epoxy resin(EP),reaching 309%of the original value.On this basis,the mechanism of BSi to enhance the adhesion effect was discussed.The electron deficient B in BSi attracted the electron rich N and O in EP to enhance the chemical interaction,combined with the interfacial migration behavior in the curing process,to improve the adhesion strength.This study provides the design and synthesis ideas of adhesive aids,and a reference for further exploring the interface mechanism of epoxy resin matrix composites.展开更多
Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconi...Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 μm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37℃ for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, B1, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP- containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL.展开更多
The objective of this study was to evaluate the effect of functionalizing a dental adhesive resin with YbF_3/SiO_2 fillers for use as radiopacifiers.Particles of YbF_3/SiO_2 were obtained with the high-energy mechanic...The objective of this study was to evaluate the effect of functionalizing a dental adhesive resin with YbF_3/SiO_2 fillers for use as radiopacifiers.Particles of YbF_3/SiO_2 were obtained with the high-energy mechanical milling method and characterized by both physical and chemical methods.After characterization,the particles were sieved and silanized prior to being incorporated into an adhesive resin.The stability of the particle suspension was then evaluated.After light activation,the radiopacity,degree of conversion,flexural strength and elastic modulus were determined.The dental adhesive resins with 10 and 15 wt% of filler provided satisfactory radiopacity,while flexural strength and elastic modulus were not affected.The degree of conversion was statistically lower than that of the control(p<0.05).The method used for incorporating the tested ytterbium fluoride/silicon dioxide particles at concentrations of 10 and 15 wt% was shown to be feasible for the development of a radiopaque dental adhesive system.展开更多
Adhesively Bonded Carbon Fibre Reinforced Plastic(CFRP)and titanium alloy have been extensively used as a hybrid structure in modern aircrafts due to their excellent combination of mechanical properties and chemical s...Adhesively Bonded Carbon Fibre Reinforced Plastic(CFRP)and titanium alloy have been extensively used as a hybrid structure in modern aircrafts due to their excellent combination of mechanical properties and chemical stabilities.This study utilised NaOH anodising method to create micro-rough titanium surfaces for enhancing adhesive bonding between titanium alloy and CFRP laminates.A special and simple technique named Resin Pre-Coating(RPC)was also employed to improve the surface wetting of anodised titanium and grinded CFRP substrates.The influences of anodising temperature and duration on the surface morphology,wettability and adhesive bond strength were investigated.The single lap shear test results showed that the bond strength of specimens anodised at 20℃for 15 min improved by 135.9%and 95.4%,respectively,in comparison with that of acid pickled and grinded specimens(without RPC treatment).Although increasing the anodising temperature and duration produced rougher titanium surfaces,the adhesively bonded joints were not strong enough due to relatively friable titanium oxide layers.展开更多
Lignin is a natural biopolymer with a complex three-dimensional network, commercially obtained from wasteliquid of paper pulp and bioethanol production, and could be a candidate for preparation of environment-friendly...Lignin is a natural biopolymer with a complex three-dimensional network, commercially obtained from wasteliquid of paper pulp and bioethanol production, and could be a candidate for preparation of environment-friendlybio-based polyphenol material. In the present work, the demethylated wheat straw alkali lignin (D-Lig), preparedby demethylation of wheat straw alkali lignin (Lig) using an in-situ generated Lewis acid, was used to synthesizebio-based phenol formaldehyde resin adhesive (D-LPF) applied in plywood. Effects of synthetic process’s factors,including lignin substitution for phenol, NaOH concentration and molar ratio of formaldehyde to phenol, on thebonding strength and free formaldehyde content of D-LPF were investigated in detail, and the optimum syntheticprocess of D-LPF was obtained as following: Lignin substitution for phenol 60%, NaOH concentration 5.0% andmolar ratio of formaldehyde to phenol 2.0, and under the optimum reaction condition, the D-LPF presented lower free formaldehyde content (0.18%) and higher bonding strength (2.19 MPa), which was better than those ofcontaining-lignin phenol formaldehyde resin adhesive (LPF). Additionally, the curing behavior of the adhesivewas studied by differential scanning calorimetry (DSC) combined with gel time. It can be obtained that D-LPFresin adhesive had the shortest gel time, and fastest curing rate, compared with those of PF and L-PF resin adhesives. The curing kinetics data was fitted well by Kissinger model using non-isothermal DSC method, and theaverage activation energy value was 85.3 kJ/mol, slightly higher than that of commercial PF resin, while lowerthan that of LPF (90.2 kJ/mol). Finally, based on the analytical results of high temperature fourier transform infrared spectroscopy (FTIR), a possible curing mechanism of D-LPF was proposed.展开更多
A Kind of homogeneous resin , which can be used as thermal resistant adhesive and matrix for composite, was prepared by bis (4-maleimidophenyl) methane ( BMI), 4,4’ -diaminodiphenylmethane( DDM), aniline (An), phenol...A Kind of homogeneous resin , which can be used as thermal resistant adhesive and matrix for composite, was prepared by bis (4-maleimidophenyl) methane ( BMI), 4,4’ -diaminodiphenylmethane( DDM), aniline (An), phenol type epoxy resin ( F-51 ) and nitrile -butadiene rubber ( NRR) through solution copolymer-ization . The reaction from prepolymerization to curing of the resin system was studied. And the factors such as raw material ratio and curing temperature, which affect thermal resistance and adhesives of cured product, were also analyzed. SEM and IR spectra were utilized to discuss the mechanisms of toughness and reaction of modified BMI.展开更多
Recently,the exploitation of renewable plant resources in the formulation of adhesives is very promising for their availability at low coast,as well as their richness in biomolecules such as polyphenols.In this way,ma...Recently,the exploitation of renewable plant resources in the formulation of adhesives is very promising for their availability at low coast,as well as their richness in biomolecules such as polyphenols.In this way,many research studies tannins extracted from different sources such as mimosa,quebracho,and pine have been the subject of very satisfactory recent studies.In this paper,a new complete characterization of the tannins extracted from the bark of eucalyptus globulus harvested from two regions in Algeria was achieved.The structural characterization enabled us to confirm the richness in condensed tannins,particularly in procyanidin and prodelphinidin units.The most reactive tannins obtained during extraction at 70℃(yield:27.1%)have a Stiasny number of 75.92%.This extract was used for the formulation of adhesives(tannin/hexamine).The thermal characterizaction of the adhesives showed higher stability for the tannin formulation of eucalyptus/hexamine as well as an excellent mechanical performance with a MOE of 2807 MPa at 180℃and shear strength of 689.4 N/mm^(2).展开更多
To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength,degree of conversion,along with resin infiltration within the dem...To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength,degree of conversion,along with resin infiltration within the demineralized dentin substrate,an experimental adhesive-system was modified with different concentrations of riboflavin(mlm,0,1%,3%,5%and 10%).Dentin surfaces were etched with 37%phosphoric acid,bonded with respective adhesives,restored with restorative composite-resin,and sectioned into resin-dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva.Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams.The degree of conversion was evaluated with Fourier transform infrared spectroscopy(FTIR) at different time points along with micro-Raman spectroscopy analysis.Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison.Modification with 1%and 3%riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion(P〈0.05).The most predominant failure mode was the mixed fracture among all specimens except 10%riboflavin-modified adhesive specimens where cohesive failure was predominant.Raman analysis revealed that 1%and 3%riboflavin adhesives specimens showed relatively higher resin infiltration.The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3%(mlm) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration.展开更多
A new corona protection varnish was prepared by using epoxy/montmorillonite nanocomposite and pure epoxy resin as adhesives respectively.The adhesive with different amounts of organic montmorillonite(OMMT) was mixed...A new corona protection varnish was prepared by using epoxy/montmorillonite nanocomposite and pure epoxy resin as adhesives respectively.The adhesive with different amounts of organic montmorillonite(OMMT) was mixed with 1200 mesh silicon carbide(Si C) by different weight ratios.The surface states of the varnishes with various adhesives were observed by powerful optical microscope.Some properties of the varnishes were analyzed during the enduring time under 5kV/cm DC,such as the relation of change in nonlinear coefficient,natural surface resistivity,and surface temperature variation.The results showed that the amounts of OMMT had little effect on the natural surface resistance of the varnish but had important influence on the nonlinear property of the varnish.When the range of the OMMT content was 2wt% to 6wt%,the nonlinear coefficient of all materials with epoxy/OMMT nano-composite adhesive was higher than that with pure epoxy resin adhesive.The surface temperature of the varnish with epoxy/OMMT nanocomposite adhesive was all lower than that with the pure epoxy resin adhesive under high electrical field strength.展开更多
In this paper,we have tested the normal and mottled enamel in order to get some instructive information for the clinical treatment. As demonstrated by the results of our experiments, the grinding treatment of the enam...In this paper,we have tested the normal and mottled enamel in order to get some instructive information for the clinical treatment. As demonstrated by the results of our experiments, the grinding treatment of the enamel superficial layer has no significant improvement on the adhesional strength of the junction between the normally developed teeth and the resin. However, it does exhibit evident effect on the adhesional strength of the junction between the fluorosis teeth and the repairing resin.展开更多
基金supported by the Yunnan Provincial Natural Science Foundation (202201AU070222,202201AT070045,202101BD070001-074)Scientific Research Fund Project of Yunnan Provincial Department of Education (2022J0490)financed by the 111 Project (D21027).
文摘Using non-toxic,low-volatile glyoxal to completely replace formaldehyde for preparing urea-glyoxal(UG)resin adhesive is a hot research topic that could be of great interest for the wood industry.However,urea-glyoxal(UG)resins prepared by just using glyoxal instead of formaldehyde usually yields a lower degree of polymerization.This results in a poorer bonding performance and water resistance of UG resins.A good solution is to pre-react urea to preform polyurea molecules presenting already a certain degree of polymerization,and then to condense these with glyoxal to obtain a novel UG resin.Therefore,in this present work,the urea was reacted with hexamethylene diamine to form a polyurea named HU,and then this was used to react it with different amounts of glyoxal to synthesize hexamethylenediamine-urea-glyoxal(HUG)polycondensation resins,and to use this for bonding plywood.The results show that the glyoxal can well react with HU polyuria via addition and schiff base reaction,and also the HUG resin exhibits excellent bonding strength and water resistance.The shear strength of the plywood bonded with this HUG at 160°C hot press temperature as high as 1.93 MPa,2.16 MPa and 1.61 MPa,respectively,which meets the requirement of the China national standard GB/T 9846-2015(≥0.7 MPa),and can be a good choice as a wood adhesive for industrial application.
基金financed under the scheme of Laboratory of Excellence ARBRE by the French Agence Nationale de la Recherche(ANR).
文摘This article presents the first applied results of using citric acid in combinations with a melamine-urea-formal-dehyde(MUF)resin for bonding wood veneers.The chemical reactions involved are shown based on a MALDI ToF analysis of the reaction of the MUF resin with citric acid.The preliminary results of the physical and mechanical properties of the LVL prepared are also presented.Veneers from Populus sp were used to manufacture 5-layer laminated veneer lumber(LVL)of small dimensions.Five combinations of the amount of citric acid,MUF spread rate and pressing parameters were tested.LVL bonded with 20%of citric acid+100 g/m^(2)of MUF,hot-pressed using a 3-step process with maximum 1.5 MPa of pressure yielded the board with better dimensional stability and mechanical properties.It could be concluded that citric acid in combination with MUF can be used for bonding wood veneer and the research should be continued to study further the parameters involved and to enhance the results.
基金Funded by the Science and Technology Department Program of Guizhou Province (ZK[2021]162 and [2019]2325)the Special Project of"Doctor Professor Service Group of Kaili University (BJFWT201906)+1 种基金the Cultivation Project of Guizhou University of China ([2019]37)the Camellia Engineering Technology Research Center of Guizhou Province ([2018]5252)。
文摘Epoxy resin (EPR) was used to crosslink with Camellia oleifera Abel.protein to prepare wood adhesive,and the bonding performance and curing characteristics of which were mainly investigated,and the synthesis mechanism was also discussed by using model compounds.The experimental results show that EPR can significantly improve the bonding performance of Camellia oleifera Abel.protein-based adhesive,and the maximum of which reaches 0.72 MPa satisfies the strength requirement of Type II plywood in GB/T 17657-2013.After alkali treatment,the protein can more easily crosslink with EPR at low curing temperature,and the adhesive has high degree of crystallinity of curing products,high degree of crosslinking reaction,and high bonding strength.The reaction mechanism of EPR-modified Camellia oleifera Abel.protein adhesive can be divided into resinification phase and curing phase.
基金Supported by Commission of Science Technology and Industry for National Defense of China(No.JPPT-115-477).
文摘To determinate the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints, energy dispersive X-ray spectroscopy analysis(EDX) is used to establish the content change of oxy- gen in the adhesive in adhesive/carbon fther reinforced epoxy resin composite joints. As water is made up of oxygen and hydrogen, the water diffusion coefficients and dynamics in adhesive/carben fiber reinforced epoxy resin composite joints can be obtained from the change in the content of oxygen in the adhesive during humidity aging, via EDX analy-sis. The authors have calculated the water diffusion coefficients and dynamics in the adhesive/carbon fiber reinforced epoxy resin composite joints with the aid of beth energy dispersive X-ray spectroscopy and elemental analysis. The de- termined results with EDX analysis are almost the same as those determined with elemental analysis and the results al- so show that the durability of the adhesive/carbon fther reinforced epoxy resin composite joints subjected to silane cou- pling agent treatment is better than those subjected to sand paper burnishing treatment and chemical oxidation treat- ment.
文摘White spot infiltration emerged as an alternative of non-invasive treatment to halt progression of the lesion, through the use of low viscosity resins that would permeate the porous enamel and form a physical barrier that would prevent the acid diffusion produced by micro-organisms. Purpose: To compare penetration levels in artificial white spot lesions, of infiltrant resin ICON™and 2 conventional adhesives systems, XP-Bond™and Single Bond 2™. Methodology: White spot lesions (ICDAS code 2) were caused in 75 premolars or third molars were extracted in good conditions, by immersion in a 0.1 M lactic acid solution (pH 4.5) at 37℃ for 8 weeks. They were divided randomly into 3 groups of 25 samples and applied the following resins, Group A: ICON™, B: XP-Bond™and C: Single Bond 2™. Subsequently, the enamel was removed with hydrochloric acid to expose resin saturated area and the samples were metalized with Au-Pd for SEM observation. The resin tags lengths were measured on microphotographs through software, and the values were analyzed with the statistics ANOVA and Scheffé post-test. Results: There were significant differences (p ™(82.7 μm ± 26.8 μm) compared to adhesive systems XP-Bond™(58.5 μm ± 29.3 μm) and Single Bond 2™(44.8 μm ± 32.5 μm). We found no significant differences between the two adhesive systems (p > 0.05). Conclusion: Under the conditions tested, the penetration of infiltrant ICON was significantly higher than the adhesive systems;however, it removes the surface layer of the enamel.
基金the Core Research Facilities of College of Chemistry and Molecular Sciences and Wuhan University Test Center and Open Fund of Hubei Key Laboratory of Aerospace Power Advanced Technologythe Open Fund of Hubei Key Laboratory of Aerospace Power Advanced Technologythe Special Fund for Industrial and informatization Industry Foundation Reconstruction and High Quality Development of Manufacturing Industry(No.TC220H068)。
文摘We improved the adhesion between silicon based insulating materials and epoxy resin composites by adding the adhesion promoter cycloborosiloxane(BSi,cyclo-1,3,3,5,7,7-hexaphenyl-1,5-diboro-3,7-disiloxane).The experimental results show that the addition of BSi in the silicone rubber(SR)system significantly increases the tensile shear strength between BSi and epoxy resin(EP),reaching 309%of the original value.On this basis,the mechanism of BSi to enhance the adhesion effect was discussed.The electron deficient B in BSi attracted the electron rich N and O in EP to enhance the chemical interaction,combined with the interfacial migration behavior in the curing process,to improve the adhesion strength.This study provides the design and synthesis ideas of adhesive aids,and a reference for further exploring the interface mechanism of epoxy resin matrix composites.
文摘Aim To evaluate the interactive effects of different self- adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 μm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37℃ for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, B1, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP- containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL.
基金the Brazilian National Council for Scientific and Technological Development for financial support,FAPERGS,CNPq,and CAPES
文摘The objective of this study was to evaluate the effect of functionalizing a dental adhesive resin with YbF_3/SiO_2 fillers for use as radiopacifiers.Particles of YbF_3/SiO_2 were obtained with the high-energy mechanical milling method and characterized by both physical and chemical methods.After characterization,the particles were sieved and silanized prior to being incorporated into an adhesive resin.The stability of the particle suspension was then evaluated.After light activation,the radiopacity,degree of conversion,flexural strength and elastic modulus were determined.The dental adhesive resins with 10 and 15 wt% of filler provided satisfactory radiopacity,while flexural strength and elastic modulus were not affected.The degree of conversion was statistically lower than that of the control(p<0.05).The method used for incorporating the tested ytterbium fluoride/silicon dioxide particles at concentrations of 10 and 15 wt% was shown to be feasible for the development of a radiopaque dental adhesive system.
基金supported by the National Natural Science Foundations of China(No.52102115)the Natural Science Foundations of Sichuan Province,China(No.2023NSFSC0961)the Fundamental Research Funds of Jiangsu University of Science and Technology,China(No.1022932318)。
文摘Adhesively Bonded Carbon Fibre Reinforced Plastic(CFRP)and titanium alloy have been extensively used as a hybrid structure in modern aircrafts due to their excellent combination of mechanical properties and chemical stabilities.This study utilised NaOH anodising method to create micro-rough titanium surfaces for enhancing adhesive bonding between titanium alloy and CFRP laminates.A special and simple technique named Resin Pre-Coating(RPC)was also employed to improve the surface wetting of anodised titanium and grinded CFRP substrates.The influences of anodising temperature and duration on the surface morphology,wettability and adhesive bond strength were investigated.The single lap shear test results showed that the bond strength of specimens anodised at 20℃for 15 min improved by 135.9%and 95.4%,respectively,in comparison with that of acid pickled and grinded specimens(without RPC treatment).Although increasing the anodising temperature and duration produced rougher titanium surfaces,the adhesively bonded joints were not strong enough due to relatively friable titanium oxide layers.
基金This work was supported by the National Natural Science Foundation of China(51473024)by University Science Research General Project of Jiangsu Province(16KJD430001)。
文摘Lignin is a natural biopolymer with a complex three-dimensional network, commercially obtained from wasteliquid of paper pulp and bioethanol production, and could be a candidate for preparation of environment-friendlybio-based polyphenol material. In the present work, the demethylated wheat straw alkali lignin (D-Lig), preparedby demethylation of wheat straw alkali lignin (Lig) using an in-situ generated Lewis acid, was used to synthesizebio-based phenol formaldehyde resin adhesive (D-LPF) applied in plywood. Effects of synthetic process’s factors,including lignin substitution for phenol, NaOH concentration and molar ratio of formaldehyde to phenol, on thebonding strength and free formaldehyde content of D-LPF were investigated in detail, and the optimum syntheticprocess of D-LPF was obtained as following: Lignin substitution for phenol 60%, NaOH concentration 5.0% andmolar ratio of formaldehyde to phenol 2.0, and under the optimum reaction condition, the D-LPF presented lower free formaldehyde content (0.18%) and higher bonding strength (2.19 MPa), which was better than those ofcontaining-lignin phenol formaldehyde resin adhesive (LPF). Additionally, the curing behavior of the adhesivewas studied by differential scanning calorimetry (DSC) combined with gel time. It can be obtained that D-LPFresin adhesive had the shortest gel time, and fastest curing rate, compared with those of PF and L-PF resin adhesives. The curing kinetics data was fitted well by Kissinger model using non-isothermal DSC method, and theaverage activation energy value was 85.3 kJ/mol, slightly higher than that of commercial PF resin, while lowerthan that of LPF (90.2 kJ/mol). Finally, based on the analytical results of high temperature fourier transform infrared spectroscopy (FTIR), a possible curing mechanism of D-LPF was proposed.
文摘A Kind of homogeneous resin , which can be used as thermal resistant adhesive and matrix for composite, was prepared by bis (4-maleimidophenyl) methane ( BMI), 4,4’ -diaminodiphenylmethane( DDM), aniline (An), phenol type epoxy resin ( F-51 ) and nitrile -butadiene rubber ( NRR) through solution copolymer-ization . The reaction from prepolymerization to curing of the resin system was studied. And the factors such as raw material ratio and curing temperature, which affect thermal resistance and adhesives of cured product, were also analyzed. SEM and IR spectra were utilized to discuss the mechanisms of toughness and reaction of modified BMI.
基金This work is supported by the Polytechnic military school(Ecole Militaire Polytechnique)Algeria,and the Centre in Analytical Chemistry and Physics(CRAPC)Algeria.
文摘Recently,the exploitation of renewable plant resources in the formulation of adhesives is very promising for their availability at low coast,as well as their richness in biomolecules such as polyphenols.In this way,many research studies tannins extracted from different sources such as mimosa,quebracho,and pine have been the subject of very satisfactory recent studies.In this paper,a new complete characterization of the tannins extracted from the bark of eucalyptus globulus harvested from two regions in Algeria was achieved.The structural characterization enabled us to confirm the richness in condensed tannins,particularly in procyanidin and prodelphinidin units.The most reactive tannins obtained during extraction at 70℃(yield:27.1%)have a Stiasny number of 75.92%.This extract was used for the formulation of adhesives(tannin/hexamine).The thermal characterizaction of the adhesives showed higher stability for the tannin formulation of eucalyptus/hexamine as well as an excellent mechanical performance with a MOE of 2807 MPa at 180℃and shear strength of 689.4 N/mm^(2).
基金supported,in part,by the Ministry of Education,Singapore,NUS/ARF grants R221000039133 and R221000052112
文摘To modify two-step experimental etch-and-rinse dentin adhesive with different concentrations of riboflavin and to study its effect on the bond strength,degree of conversion,along with resin infiltration within the demineralized dentin substrate,an experimental adhesive-system was modified with different concentrations of riboflavin(mlm,0,1%,3%,5%and 10%).Dentin surfaces were etched with 37%phosphoric acid,bonded with respective adhesives,restored with restorative composite-resin,and sectioned into resin-dentin slabs and beams to be stored for 24 h or 9 months in artificial saliva.Micro-tensile bond testing was performed with scanning electron microscopy to analyse the failure of debonded beams.The degree of conversion was evaluated with Fourier transform infrared spectroscopy(FTIR) at different time points along with micro-Raman spectroscopy analysis.Data was analyzed with one-way and two-way analysis of variance followed by Tukey's for pair-wise comparison.Modification with 1%and 3%riboflavin increased the micro-tensile bond strength compared to the control at 24 h and 9-month storage with no significant differences in degree of conversion(P〈0.05).The most predominant failure mode was the mixed fracture among all specimens except 10%riboflavin-modified adhesive specimens where cohesive failure was predominant.Raman analysis revealed that 1%and 3%riboflavin adhesives specimens showed relatively higher resin infiltration.The incorporation of riboflavin in the experimental two-step etch-and-rinse adhesive at 3%(mlm) improved the immediate bond strengths and bond durability after 9-month storage in artificial saliva without adversely affecting the degree of conversion of the adhesive monomers and resin infiltration.
基金Funded by the Major State Basic Research Development Program of China(No.2010CB736208)the Planning Project of Hei Longjiang Province for Science and Technology(No.GC10A203)
文摘A new corona protection varnish was prepared by using epoxy/montmorillonite nanocomposite and pure epoxy resin as adhesives respectively.The adhesive with different amounts of organic montmorillonite(OMMT) was mixed with 1200 mesh silicon carbide(Si C) by different weight ratios.The surface states of the varnishes with various adhesives were observed by powerful optical microscope.Some properties of the varnishes were analyzed during the enduring time under 5kV/cm DC,such as the relation of change in nonlinear coefficient,natural surface resistivity,and surface temperature variation.The results showed that the amounts of OMMT had little effect on the natural surface resistance of the varnish but had important influence on the nonlinear property of the varnish.When the range of the OMMT content was 2wt% to 6wt%,the nonlinear coefficient of all materials with epoxy/OMMT nano-composite adhesive was higher than that with pure epoxy resin adhesive.The surface temperature of the varnish with epoxy/OMMT nanocomposite adhesive was all lower than that with the pure epoxy resin adhesive under high electrical field strength.
文摘In this paper,we have tested the normal and mottled enamel in order to get some instructive information for the clinical treatment. As demonstrated by the results of our experiments, the grinding treatment of the enamel superficial layer has no significant improvement on the adhesional strength of the junction between the normally developed teeth and the resin. However, it does exhibit evident effect on the adhesional strength of the junction between the fluorosis teeth and the repairing resin.