Boswellic acids is a general term for a series of pentacyclic triterpenoid compounds that are isolated from the oleogin resin of the Boswellia genus and serve as the main active ingredient.It exhibits a wide range of ...Boswellic acids is a general term for a series of pentacyclic triterpenoid compounds that are isolated from the oleogin resin of the Boswellia genus and serve as the main active ingredient.It exhibits a wide range of biological activities,such as anti-inflammatory,anti-cancer,antibacterial,antiviral,hepatoprotective,neuroprotective,anti-diabetic,and anti-thrombotic properties.As a result,it has gained significant recognition among practitioners of traditional Chinese and Indian medicine.These biological effects may be associated with multiple molecular targets and signal transduction pathways.However,the poor pharmacokinetic properties of the substance lead to lower bioavailability,which affects its effectiveness.To address this issue,scientists have proposed a number of strategies,such as solid dispersions,phytosome®technologies,and novel drug delivery systems.This article aims to provide a comprehensive overview for boswellic acids on the phytochemistry,molecular mechanisms,potential therapeutic applications,and strategies to improve bioavailability.展开更多
In recent years, metabolic syndrome has been a growing health concern across the world. The role of nutraceuticals and functional foods in this area has a significant place due to the adverse effects of contemporary m...In recent years, metabolic syndrome has been a growing health concern across the world. The role of nutraceuticals and functional foods in this area has a significant place due to the adverse effects of contemporary modes of treatment. CurCousin<sup>®</sup> is a nutritional ingredient containing bioactive Calebin A, (analog of Curcumin) with self-affirmed GRAS status. CurCousin<sup>®</sup> has been a clinically studied dietary supplement ingredient with a positive impact on body weight, lipid levels and metabolic health. Bioenhancers play an important role in increasing the bioavailability of the active in turn enhancing efficacy as well as reducing the dosage required to achieve the therapeutic effect. This study investigated the possible pharmacokinetic interaction between CurCousin<sup>®</sup> at two different doses (2.25 and 4.5 mg/kg) in the presence and absence of BioPerine<sup>®</sup> (0.27 mg/kg), a natural bioenhancer in Sprague-Dawley rats. The results revealed that the addition of BioPerine<sup>®</sup> into CurCousin<sup>®</sup> (2.25 mg/kg) half the dose when administered enhances the bioavailability and was equipotent to CurCousin<sup>®</sup> (4.5 mg/kg) double the dose without BioPerine<sup>®</sup>. Thus, leading to future clinical studies to evaluate its improved pharmacological efficacy as well as reduced therapeutic dosage.展开更多
Taxifolin loaded zein-caseinate nanoparticles(TZP)were fabricated by the anti-solvent method and were used as an oral delivery vehicle to improve their bioavailability in the rat.The formulations of TZP were optimized...Taxifolin loaded zein-caseinate nanoparticles(TZP)were fabricated by the anti-solvent method and were used as an oral delivery vehicle to improve their bioavailability in the rat.The formulations of TZP were optimized.With mass ratio of 1:1:2 between taxifolin,zein and sodium caseinate,the particle size andζpotential of TZP were(168.74±0.35)nm and−(57.67±0.25)mV,while the encapsulation and loading efficiency of taxifolin were(85.83±0.89)%and(17.11±0.88)%,respectively.After freeze-drying,TZP exhibited excellent redispersibility in water without aggregation.Physicochemical characterization showed that taxifolin existed in amorphous form in TZP and its interaction with the protein was observed.After encapsulating in TZP,the excellent dispersion of taxifolin in water signifi cantly improve its diffusion velocity through a semipermeable membrane.After oral administration,taxifolin and its 5 metabolites were identifi ed in rat plasma by ultra high performance liquid chromatography(UPLC)with quadrupole time-of-flight mass spectrometry(UPLC-QTOF-MS).The dynamic variation of taxifolin and its metabolites in plasma were then quantifi ed by UPLC with a triple-quadrupole typemass spectroscopy(UPLC-QqQ-MS/MS).A pharmacokinetic study showed that the bioavailability of taxifolin increased from 0.35%to 0.52%through TZP fabrication.The plasma concentration of taxifolin glucuronide and methylated taxifolin glucuronide was much higher than taxifolin.Glucuronidation was the dominating metabolism pathway of taxifolin in vivo.展开更多
Iron deficiency anemia(IDA)is a major global health problem.Tegillarca granosa has been considered as an excellent source of iron given its high content of iron-binding protein,ferritin.The aim of the present study wa...Iron deficiency anemia(IDA)is a major global health problem.Tegillarca granosa has been considered as an excellent source of iron given its high content of iron-binding protein,ferritin.The aim of the present study was to determine the physicochemical properties,protein structures,and iron uptake of ferritin extracted from T.granosa,and to evaluate the potential impacts of chitosan glycosylation on these characteristics.Based on Box-Behnken design and response surface methodology,the optimal conditions for glycosylation included a ferritin/chitosan mass ratio of 4:1,a pH of 5.5,a reaction time of 10 min,and a reaction temperature of 50℃.Glycosylation caused decreased surface hydrophobicity and elevated water-holding capacity of ferritin due to the introduction of hydrophilic groups.Additionally,glycosylation improved antioxidant capacity of ferritin by 20.69%–189.66%,likely owing to the protons donated by saccharide moiety to terminate free radical chain reaction.The in vitro digestibility of ferritin was elevated by 22.56%–104.85%after glycosylation,which could be associated with lessβ-sheet content in secondary structure that made the glycosylated protein less resistant to enzymatic digestion.The results of the iron bioavailability in Caco-2 cells revealed that ferritin(78.85–231.77 ngmg^(−1))exhibited better iron bioavailability than FeSO4(51.48–114.37 ngmg^(−1))and the values were further elevated by glycosylation with chitosan(296.23–358.20 ngmg^(−1)),which may be related to the physicochemical properties of ferritin via glycosylation modification.These results provide a basis for the development of T.granosa derived ferritin and its glycosylated products,and can promote the utilization of aquatic resources.展开更多
With various potential health-promoting bioactivities,genistein has great prospects in treatment of a series of complex diseases and metabolic syndromes such as cancer,diabetes,cardiovascular diseases,menopausal sympt...With various potential health-promoting bioactivities,genistein has great prospects in treatment of a series of complex diseases and metabolic syndromes such as cancer,diabetes,cardiovascular diseases,menopausal symptoms and so on.However,poor solubility and unsatisfactory bioavailability seriously limits its clinical application and market development.To optimize the solubility and bioavailability of genistein,the cocrystal of genistein and piperazine was prepared by grinding assisted with solvent based on the concept of cocrystal engineering.Using a series of analytical techniques including single-crystal X-ray diffraction,powder X-ray diffraction,Fourier transform infrared spectroscopy,differential scanning calorimetry and thermogravimetric analysis,the cocrystal was characterized and confirmed.Then,structure analysis on the basis of theoretical calculation and a series of evaluation on the stability,dissolution and bioavailability were carried out.The results indicated that the cocrystal of genistein and piperazine improved the solubility and bioavailability of genistein.Compared with the previous studies on the cocrystal of genistein,this is a systematic and comprehensive investigation from the aspects of preparation,characterization,structural analysis,stability,solubility and bioavailability evaluation.As a simple,efficient and green approach,cocrystal engineering can pave a new path to optimize the pharmaceutical properties of natural products for successful drug formulation and delivery.展开更多
Aim To investigate whether modified-release cefaclor capsules could lead to a more suitable pharmacokinetic profile in the plasma. Methods Cefaclor pellets were prepared by extrusion/spheronization and coated by Eudra...Aim To investigate whether modified-release cefaclor capsules could lead to a more suitable pharmacokinetic profile in the plasma. Methods Cefaclor pellets were prepared by extrusion/spheronization and coated by Eudragit L30D-55 or Eudragit NE30D, then the two sorts of pellets were filled to capsules in a 35:65 ratio to made a modified-release (MR) capsules. The bioavailability of the MR capsules was studied in 24 healthy volunteers after oral administration in a fast state using a commercially available immediate release (IR) capsule as a reference. Results The results showed that the MR formulation had a relatively good bioavailability compared with the commercial capsules, as well as a longer time keeping drug level above MIC than immediate release capsule. The relative bioavailability of the MR capsules was 97.4- 12.1%. Conclusion The data of the present study indicate that time of cefaclor plasma concentration above MIC can be substantially prolonged if cefaclor is administered as a modified- release product.展开更多
A new HPLC MS method to determine loratadine in human plasma was established. The method involved extracting drug with organic solvent under basic conditions. The samples were seperated by ODS column and determined ...A new HPLC MS method to determine loratadine in human plasma was established. The method involved extracting drug with organic solvent under basic conditions. The samples were seperated by ODS column and determined by mass detector. The calibration curve of loratadine was linear within the range of 0.4~100 ng·mL -1 with r=0.9995 . The recovery of this method was within 95%~104%, within day and between day RSD were less than 12%. To study the pharmacokinetics and relative bioavailability of loratadine tablets, two formulations of loratadine tablets were given to 18 healthy male volunteers according to a randomized 2 way cross over design. The C max , AUC 0 t and T max values of the two formulations were 51.89±20.18 ng·mL -1 and 52.48±22.35 ng·mL -1 ; 140.75±88.42 ng·h·mL -1 and 147.24±92.33 ng·h·mL -1 ; 0.81±0.35 h and 0.81±0.27 h respectively. Results from statistic analysis showed that there were no significant difference between the C max , AUC 0-t and T max values of the two formulations. The relative bioavailability of tablets I with respect to tablets II was 97%±13% from the AUC 0 t measurement. Bioequivalance was observed between the two tablets.展开更多
The pharmacokinetics and absolute bioavailability of the sublingual naloxone tablet were studied with HPLC-electrochemical detection. Eight male dogs received single 5 mg dose of naloxone intravenously, the plasma con...The pharmacokinetics and absolute bioavailability of the sublingual naloxone tablet were studied with HPLC-electrochemical detection. Eight male dogs received single 5 mg dose of naloxone intravenously, the plasma concentration-time curves could be fitted to two-compartment open model, with 12.0 min of t1/2( , 143.4 min of t1/2( and 7.92 mg(min/L of AUC. The same eight dogs received 5 mg dose of the sublingual naloxone tablet after an interval of a week. The main pharmacokinetic parameters were: t1/2ka = 11.0 min, t1/2( = 15.4 min, t1/2( = 164.1 min, Tmax = 27.7 min, Cmax = 34.2 ng / ml, and AUC = 6.79 mg(min / L, respectively. The plasma concentration-time curves were fitted to the first order absorption two-compartment open model also. The mean absolute bioavailability of the sublingual naloxone tablet was 86.8 ( 10.9%. No statistically significant differences were found with t1/2(, t1/2(, ( and ( between the two routes of administration. These results indicated that the course of disposition for naloxone in dogs was similar for the two routes of administration, and the absolute bioavailability of the sublingual naloxone tablet was high. Thus satisfactory clinical effects could be expected.展开更多
基金supported by the National Natural Science Foundation of China(82274313)Key R&D Program of Shaanxi Province(2023GHZD43).
文摘Boswellic acids is a general term for a series of pentacyclic triterpenoid compounds that are isolated from the oleogin resin of the Boswellia genus and serve as the main active ingredient.It exhibits a wide range of biological activities,such as anti-inflammatory,anti-cancer,antibacterial,antiviral,hepatoprotective,neuroprotective,anti-diabetic,and anti-thrombotic properties.As a result,it has gained significant recognition among practitioners of traditional Chinese and Indian medicine.These biological effects may be associated with multiple molecular targets and signal transduction pathways.However,the poor pharmacokinetic properties of the substance lead to lower bioavailability,which affects its effectiveness.To address this issue,scientists have proposed a number of strategies,such as solid dispersions,phytosome®technologies,and novel drug delivery systems.This article aims to provide a comprehensive overview for boswellic acids on the phytochemistry,molecular mechanisms,potential therapeutic applications,and strategies to improve bioavailability.
文摘In recent years, metabolic syndrome has been a growing health concern across the world. The role of nutraceuticals and functional foods in this area has a significant place due to the adverse effects of contemporary modes of treatment. CurCousin<sup>®</sup> is a nutritional ingredient containing bioactive Calebin A, (analog of Curcumin) with self-affirmed GRAS status. CurCousin<sup>®</sup> has been a clinically studied dietary supplement ingredient with a positive impact on body weight, lipid levels and metabolic health. Bioenhancers play an important role in increasing the bioavailability of the active in turn enhancing efficacy as well as reducing the dosage required to achieve the therapeutic effect. This study investigated the possible pharmacokinetic interaction between CurCousin<sup>®</sup> at two different doses (2.25 and 4.5 mg/kg) in the presence and absence of BioPerine<sup>®</sup> (0.27 mg/kg), a natural bioenhancer in Sprague-Dawley rats. The results revealed that the addition of BioPerine<sup>®</sup> into CurCousin<sup>®</sup> (2.25 mg/kg) half the dose when administered enhances the bioavailability and was equipotent to CurCousin<sup>®</sup> (4.5 mg/kg) double the dose without BioPerine<sup>®</sup>. Thus, leading to future clinical studies to evaluate its improved pharmacological efficacy as well as reduced therapeutic dosage.
基金supported by the National Natural Science Foundation of China(32060541).
文摘Taxifolin loaded zein-caseinate nanoparticles(TZP)were fabricated by the anti-solvent method and were used as an oral delivery vehicle to improve their bioavailability in the rat.The formulations of TZP were optimized.With mass ratio of 1:1:2 between taxifolin,zein and sodium caseinate,the particle size andζpotential of TZP were(168.74±0.35)nm and−(57.67±0.25)mV,while the encapsulation and loading efficiency of taxifolin were(85.83±0.89)%and(17.11±0.88)%,respectively.After freeze-drying,TZP exhibited excellent redispersibility in water without aggregation.Physicochemical characterization showed that taxifolin existed in amorphous form in TZP and its interaction with the protein was observed.After encapsulating in TZP,the excellent dispersion of taxifolin in water signifi cantly improve its diffusion velocity through a semipermeable membrane.After oral administration,taxifolin and its 5 metabolites were identifi ed in rat plasma by ultra high performance liquid chromatography(UPLC)with quadrupole time-of-flight mass spectrometry(UPLC-QTOF-MS).The dynamic variation of taxifolin and its metabolites in plasma were then quantifi ed by UPLC with a triple-quadrupole typemass spectroscopy(UPLC-QqQ-MS/MS).A pharmacokinetic study showed that the bioavailability of taxifolin increased from 0.35%to 0.52%through TZP fabrication.The plasma concentration of taxifolin glucuronide and methylated taxifolin glucuronide was much higher than taxifolin.Glucuronidation was the dominating metabolism pathway of taxifolin in vivo.
基金supported by the National Key R&D Program of China(No.2018YFD0901105).
文摘Iron deficiency anemia(IDA)is a major global health problem.Tegillarca granosa has been considered as an excellent source of iron given its high content of iron-binding protein,ferritin.The aim of the present study was to determine the physicochemical properties,protein structures,and iron uptake of ferritin extracted from T.granosa,and to evaluate the potential impacts of chitosan glycosylation on these characteristics.Based on Box-Behnken design and response surface methodology,the optimal conditions for glycosylation included a ferritin/chitosan mass ratio of 4:1,a pH of 5.5,a reaction time of 10 min,and a reaction temperature of 50℃.Glycosylation caused decreased surface hydrophobicity and elevated water-holding capacity of ferritin due to the introduction of hydrophilic groups.Additionally,glycosylation improved antioxidant capacity of ferritin by 20.69%–189.66%,likely owing to the protons donated by saccharide moiety to terminate free radical chain reaction.The in vitro digestibility of ferritin was elevated by 22.56%–104.85%after glycosylation,which could be associated with lessβ-sheet content in secondary structure that made the glycosylated protein less resistant to enzymatic digestion.The results of the iron bioavailability in Caco-2 cells revealed that ferritin(78.85–231.77 ngmg^(−1))exhibited better iron bioavailability than FeSO4(51.48–114.37 ngmg^(−1))and the values were further elevated by glycosylation with chitosan(296.23–358.20 ngmg^(−1)),which may be related to the physicochemical properties of ferritin via glycosylation modification.These results provide a basis for the development of T.granosa derived ferritin and its glycosylated products,and can promote the utilization of aquatic resources.
基金the National Natural Science Foundation of China(Grant No.22278443)CAMS Innovation Fund for Medical Sciences(Grant No.2022-I2M-1-015)the Chinese Pharmacopoeia Commission Drug Standard Promoting Fund(Grant No.2023Y11)for financial support.
文摘With various potential health-promoting bioactivities,genistein has great prospects in treatment of a series of complex diseases and metabolic syndromes such as cancer,diabetes,cardiovascular diseases,menopausal symptoms and so on.However,poor solubility and unsatisfactory bioavailability seriously limits its clinical application and market development.To optimize the solubility and bioavailability of genistein,the cocrystal of genistein and piperazine was prepared by grinding assisted with solvent based on the concept of cocrystal engineering.Using a series of analytical techniques including single-crystal X-ray diffraction,powder X-ray diffraction,Fourier transform infrared spectroscopy,differential scanning calorimetry and thermogravimetric analysis,the cocrystal was characterized and confirmed.Then,structure analysis on the basis of theoretical calculation and a series of evaluation on the stability,dissolution and bioavailability were carried out.The results indicated that the cocrystal of genistein and piperazine improved the solubility and bioavailability of genistein.Compared with the previous studies on the cocrystal of genistein,this is a systematic and comprehensive investigation from the aspects of preparation,characterization,structural analysis,stability,solubility and bioavailability evaluation.As a simple,efficient and green approach,cocrystal engineering can pave a new path to optimize the pharmaceutical properties of natural products for successful drug formulation and delivery.
文摘Aim To investigate whether modified-release cefaclor capsules could lead to a more suitable pharmacokinetic profile in the plasma. Methods Cefaclor pellets were prepared by extrusion/spheronization and coated by Eudragit L30D-55 or Eudragit NE30D, then the two sorts of pellets were filled to capsules in a 35:65 ratio to made a modified-release (MR) capsules. The bioavailability of the MR capsules was studied in 24 healthy volunteers after oral administration in a fast state using a commercially available immediate release (IR) capsule as a reference. Results The results showed that the MR formulation had a relatively good bioavailability compared with the commercial capsules, as well as a longer time keeping drug level above MIC than immediate release capsule. The relative bioavailability of the MR capsules was 97.4- 12.1%. Conclusion The data of the present study indicate that time of cefaclor plasma concentration above MIC can be substantially prolonged if cefaclor is administered as a modified- release product.
文摘A new HPLC MS method to determine loratadine in human plasma was established. The method involved extracting drug with organic solvent under basic conditions. The samples were seperated by ODS column and determined by mass detector. The calibration curve of loratadine was linear within the range of 0.4~100 ng·mL -1 with r=0.9995 . The recovery of this method was within 95%~104%, within day and between day RSD were less than 12%. To study the pharmacokinetics and relative bioavailability of loratadine tablets, two formulations of loratadine tablets were given to 18 healthy male volunteers according to a randomized 2 way cross over design. The C max , AUC 0 t and T max values of the two formulations were 51.89±20.18 ng·mL -1 and 52.48±22.35 ng·mL -1 ; 140.75±88.42 ng·h·mL -1 and 147.24±92.33 ng·h·mL -1 ; 0.81±0.35 h and 0.81±0.27 h respectively. Results from statistic analysis showed that there were no significant difference between the C max , AUC 0-t and T max values of the two formulations. The relative bioavailability of tablets I with respect to tablets II was 97%±13% from the AUC 0 t measurement. Bioequivalance was observed between the two tablets.
文摘The pharmacokinetics and absolute bioavailability of the sublingual naloxone tablet were studied with HPLC-electrochemical detection. Eight male dogs received single 5 mg dose of naloxone intravenously, the plasma concentration-time curves could be fitted to two-compartment open model, with 12.0 min of t1/2( , 143.4 min of t1/2( and 7.92 mg(min/L of AUC. The same eight dogs received 5 mg dose of the sublingual naloxone tablet after an interval of a week. The main pharmacokinetic parameters were: t1/2ka = 11.0 min, t1/2( = 15.4 min, t1/2( = 164.1 min, Tmax = 27.7 min, Cmax = 34.2 ng / ml, and AUC = 6.79 mg(min / L, respectively. The plasma concentration-time curves were fitted to the first order absorption two-compartment open model also. The mean absolute bioavailability of the sublingual naloxone tablet was 86.8 ( 10.9%. No statistically significant differences were found with t1/2(, t1/2(, ( and ( between the two routes of administration. These results indicated that the course of disposition for naloxone in dogs was similar for the two routes of administration, and the absolute bioavailability of the sublingual naloxone tablet was high. Thus satisfactory clinical effects could be expected.