Objective The biodegradation characteristics of di-n-butyl phthalate (DBP), an environmental endocrine disruptor, were studied by the method of dominant bacteria and immobilized microorganisms. Methods Taking DBP as t...Objective The biodegradation characteristics of di-n-butyl phthalate (DBP), an environmental endocrine disruptor, were studied by the method of dominant bacteria and immobilized microorganisms. Methods Taking DBP as the only carbon source to acclimatize the collected activated sludge, the concentration of DBP increased progressively in the process of acclimatization. Plate streaking was used to separate 1 strain of the degradation dominant bacteria after acclimatization. Better conditions to degrade DBP by the bacterium could be obtained through orthogonal experiments and the bacterium was identified. Then the acclimated activated sludge was made to immobilize the microorganism using polyvinyl alcohol as entrapment agent. The immobilized microorganism degraded DBP at different conditions. Results The appropriate conditions to degrade DBP by the dominant bacteria were: degradation time, 32 h; DBP concentration, 200 mg/L; rate of shaking incubator, 100 r/min; pH, 7 and temperature, 30℃. DBP could be degraded by more than 95% under such conditions. The bacteria were identified as pseudomonas. The proliferated immobilized microorganisms degraded DBP more effectively and more adapted to temperature and pH than the free acclimated activated sludge. Conclusion One strain of DBP degradation dominant bacteria was separated from the acclimatized activated sludge. It could grow with DBP as the only carbon source and energy, and degraded DBP effectively. After having been immobilized and proliferated, the dominant bacteria could keep a higher biological activity and degrade DBP more effectively than activated sludge.展开更多
Biodegradation of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane(DDT)in soil by laccase extract from white rot fungi under different experimental conditions was investigated.DDTs,which stands for the sum of p,p′-DDE,...Biodegradation of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane(DDT)in soil by laccase extract from white rot fungi under different experimental conditions was investigated.DDTs,which stands for the sum of p,p′-DDE,o,p′-DDT,p,p′-DDD and p,p′-DDT in soil was degraded efficiently,and the residue decreased rapidly during the first 15 days and then slowly during the period of 16-25 days.The biodegradation of DDTs in soil fitted the pseudo-first-order kinetics.For 5,10,15 and 25 days of incubation with laccase,the residue of DDTs in soil under different atmospheres was decreased by 20%-33%,34%-52%,41%-61%and 41%-69%respectively,under different flooding conditions that was decreased by 12%-17%,17%-30%,30%-45%and 35%-52%respectively, and for different soils that was decreased by 25%-34%,39%-53%,44%-58%and 47%-62%respectively.The half-life of DDTs in soil ranged from 15.07 to 32.95 days under O2,air or N2 atmospheres,23.07 to 40.71 days under different flooding conditions,and 18.78 to 28.88 days for different soils.Laccase is an efficient and safe agent for bioremediation of DDT-contaminated soil.展开更多
Applying dispersants to spilled crude oil results in an oil in water dispersion of microscopic oil droplets that soon dilutes to levels below 1 ppm oil. These levels are substantially below those known to induce acute...Applying dispersants to spilled crude oil results in an oil in water dispersion of microscopic oil droplets that soon dilutes to levels below 1 ppm oil. These levels are substantially below those known to induce acute toxicity in 96-hour tests. We show here that oil hydrocarbons are biodegraded very rapidly in such situations (50% loss in 4 days in this experiment), and that no increase in acute toxicity to mysids (Americamysis bahia) is seen during this biodegradation, or over the following 20 days as the oil is further degraded (78% loss of detectable hydrocarbons in this experiment).展开更多
Chlorobenzoic Acids are toxic organic compounds largely distributed in soils and sediments. They can be degraded to various products by microorgans. This paper is a review of the literature on biodegradability of the ...Chlorobenzoic Acids are toxic organic compounds largely distributed in soils and sediments. They can be degraded to various products by microorgans. This paper is a review of the literature on biodegradability of the chlorobenzoic acids. The degradation pathways, degradation genes, role of transposable elements, and construction of strains are discussed. A brief introduction is given on the environmental impacts and the pollution control.展开更多
Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products...Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products remain unclear.This study aimed to help fill this knowledge gap and examined the degradation mechanism of organophosphorus pesticide,chlorpyrifos,in milk by Lactobacillus delbrueckii ssp.bulgaricus using gas chromatography-tandem mass spectrometry(GC-MS/MS)combined with transcriptome analysis.After the strain was cultured for 20 h in the presence of chlorpyrifos,differential expressions of 383 genes were detected,including genes probably implicated during chlorpyrifos degradation such as those related to hydrolase,phosphoesterase,diphosphatase,oxidoreductase,dehydratase,as well as membrane transporters.GC-MS/MS analysis revealed the changes of secondary metabolites in L.bulgaricus during milk fermentation due to chlorpyrifos stress.6-Methylhexahydro-2H-azepin-2-one,2,6-dihydroxypyridine and methyl 2-aminooxy-4-methylpentanoate as intermediates,along with the proposed pathways,might be involved in chlorpyrifos biodegradation by L.bulgaricus.展开更多
The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes...The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes(As)and diamantanes(Ds),are relatively resistant to biodegradation and obvious biodegradation was observed in oils with a Peters-Moldowan(PM)biodegradation rank of 6 or more.Overall,the sensibility of biodegradation on diamondoids is generally similar to hopanes and regular steranes.As biodegradation evolves,the changes in concentration and components of diamondoids show that the biodegradation process is selective and stepwise.The significant increase of MD/MA and DMD/DMA for oils with a PM ranking 6^(+) indicates that diamantanes are generally more resistant to biodegradation than adamantanes.The similar trends of DMA/MA,EA/MA,MD/D,DMD/MD and other relevant indexes,show that higher alkylation homologs are more resistant to biodegradation.The commonly used diamondoid ratios,such as MAI,EAI,MDI and DMID-1,are obviously affected by biodegradation at the stage of high-level biodegradation,which may indicate that these ratios should be used with caution in case of severely degraded oils.展开更多
Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root tr...Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root traits to reveal the adaptation strategies of plants to saline-alkaline-stressed soil environments.In this study,the root biomass,root morphological parameters and root mineral nutrient content of two alfalfa cultivars with different sensitivities to alkaline stress were analyzed with black soil as the control group and the mixed saline-alkaline soil with a ratio of 7:3 between black soil and saline-alkaline soil as the saline-alkaline treatment group.At the same time,the correlation analysis of soil salinity indexes,soil nutrient indexes and the activities of key enzymes involved in soil carbon,nitrogen and phosphorus cycles was carried out.The results showed that compared with the control group,the pH,EC,and urease(URE)of the soil surrounding the roots of two alfalfa cultivars were significantly increased,while soil total nitrogen(TN),total phosphorus(TP),organic carbon(SOC),andα-glucosidase activity(AGC)were significantly decreased under saline-alkaline stress.There was no significant difference in root biomass and root morphological parameters of saline-alkaline tolerant cultivar GN under saline-alkaline stress.The number of root tips(RT),root surface area(RS)and root volume(RV)of AG were reduced by 61.16%,44.54%,and 45.31%,respectively,compared with control group.The ratios of K^(+)/Na^(+),Ca^(2+)/Na^(+)and Mg^(2+)/Na^(+)of GN were significantly higher than those of AG(p<0.05).The root fresh weight(RFW)and dry weight(RDW),root length(RL),RV and RT of alfalfa were positively regulated by soil SOC and TN,but negatively regulated by soil pH,EC,and URE(p<0.01).Root Ca^(2+)/Na+ratio was significantly positively correlated with soil TN,TP and SOC(p<0.01).The absorption of Mg and Ca ions in roots is significantly negatively regulated by soilβ-glucosidase activity(BGC)and acid phosphatase activity(APC)(p<0.05).This study improved knowledge of the relationship between root traits and soil environmental factors and offered a theoretical framework for elucidating how plant roots adapt to saline-alkaline stressed soil environments.展开更多
Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore ...Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.展开更多
For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological...For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.展开更多
In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cy...In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cyclodextrin (β-CD) was used to modify biochar (BC). The prepared modified biochar materials were labeled with β-CDBC, β-CDBC-Na, β-CDBC-CA and β-CDBC-H, respectively. The infrared spectrum, X-ray diffractometer, scanning electron microscope and specific surface area of the four modified materials were tested. The results showed that the C-O stretching vibration peak at 1020 cm<sup>−</sup><sup>1</sup> of the modified materials was slightly offset compared with that of biochar. The characteristic absorption peaks of XRD pattern decrease obviously at 2θ = 26.7˚ and 29.5˚. It can be obviously observed on the electron microscope image that the surface is loaded or formed clathrates, and BET data and graphs also show that the specific surface area of the modified biochar is larger. Therefore, β-cyclodextrin successfully modified biochar and formed clathrates on the surface of biochar or was loaded in the pore structure of biochar, especially β-CDBC-CA achieved better modification effect. Because biochar and β-cyclodextrin raw materials are cheap, easy to prepare and green, and less prone to secondary pollution, it has a good advantage in environmental governance.展开更多
In this paper, through the perspective of Merowitz’s media environmentalism, following the research path of media-scene-behaviour, and based on the results of the national reading survey released by the China Press a...In this paper, through the perspective of Merowitz’s media environmentalism, following the research path of media-scene-behaviour, and based on the results of the national reading survey released by the China Press and Publication Research Institute in the past ten years (2013-2022), we analyse the characteristics of national reading behaviours, explore the reasons for the changes in national reading behaviour in terms of technology, media, and scenarios. It also discusses the future trend of national reading behaviour and the promotion of national reading activities, and puts forward certain countermeasures from the government, schools and the society to make joint efforts to promote national reading.展开更多
Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambigu...Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications.展开更多
With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how ...With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.展开更多
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation.Metal-based degradable micromotor composed of magnesium(Mg),zinc(Zn),and iron(Fe)have promise due to their nontoxic fu...Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation.Metal-based degradable micromotor composed of magnesium(Mg),zinc(Zn),and iron(Fe)have promise due to their nontoxic fuel-free propulsion,favorable biocompatibility,and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media,efficient cargo delivery and favorable biocompatibility.A noteworthy number of degradable metal-based micromotors employ bubble propulsion,utilizing water as fuel to generate hydrogen bubbles.This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications.In addition,understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance.Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor.Here we review the design and recent advancements of metallic degradable micromotors.Furthermore,we describe the controlled degradation,efficient in vivo drug delivery,and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications.Moreover,we discuss micromotors’efficacy in detecting and destroying environmental pollutants.Finally,we address the limitations and future research directions of degradable metallic micromotors.展开更多
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M...Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.展开更多
The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well...The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.展开更多
Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental ...Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments.展开更多
Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailora...Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.展开更多
Manganese superoxide dismutase(MnSOD)is an antioxidant that exists in mitochondria and can effectively remove superoxide anions in mitochondria.In a dark,high-pressure,and low-temperature deep-sea environment,MnSOD is...Manganese superoxide dismutase(MnSOD)is an antioxidant that exists in mitochondria and can effectively remove superoxide anions in mitochondria.In a dark,high-pressure,and low-temperature deep-sea environment,MnSOD is essential for the survival of sea cucumbers.Six MnSODs were identified from the transcriptomes of deep and shallow-sea sea cucumbers.To explore their environmental adaptation mechanism,we conducted environmental selection pressure analysis through the branching site model of PAML software.We obtained night positive selection sites,and two of them were significant(97F→H,134K→V):97F→H located in a highly conservative characteristic sequence,and its polarity c hange might have a great impact on the function of MnSOD;134K→V had a change in piezophilic a bility,which might help MnSOD adapt to the environment of high hydrostatic pressure in the deepsea.To further study the effect of these two positive selection sites on MnSOD,we predicted the point mutations of F97H and K134V on shallow-sea sea cucumber by using MAESTROweb and PyMOL.Results show that 97F→H,134K→V might improve MnSOD’s efficiency of scavenging superoxide a nion and its ability to resist high hydrostatic pressure by moderately reducing its stability.The above results indicated that MnSODs of deep-sea sea cucumber adapted to deep-sea environments through their amino acid changes in polarity,piezophilic behavior,and local stability.This study revealed the correlation between MnSOD and extreme environment,and will help improve our understanding of the organism’s adaptation mechanisms in deep sea.展开更多
Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid populati...Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid population growth and economic expansion.Groundwater,a vital source of water in Asia,faces significant disparities in distribution and suffers from unsustainable exploitation practices.This study applies groundwater system theory and categorizes Asia into 11 primary groundwater systems and 36 secondary ones,based on intercontinental geological structures,climate,terrain,and hydrogeological characteristics.As of the end of 2010,Asia's assessed groundwater resources totalled 4.677×10^(9) m^(3)/a,with exploitable resources amounting to 3.274×10^(9) m^(3)/a.By considering the geological environmental impacts of groundwater development and the distinctive characteristics of terrain and landforms,six categories of effect zones with varying distribution patterns are identified.The current research on Asia's groundwater resources,environmental dynamics,and human impacts aims to provide a theoretical foundation for sustainable groundwater management and environmental conservation in the region.展开更多
基金This work was supported by National Natural Science Foundation of China (Grant No. 30271104).
文摘Objective The biodegradation characteristics of di-n-butyl phthalate (DBP), an environmental endocrine disruptor, were studied by the method of dominant bacteria and immobilized microorganisms. Methods Taking DBP as the only carbon source to acclimatize the collected activated sludge, the concentration of DBP increased progressively in the process of acclimatization. Plate streaking was used to separate 1 strain of the degradation dominant bacteria after acclimatization. Better conditions to degrade DBP by the bacterium could be obtained through orthogonal experiments and the bacterium was identified. Then the acclimated activated sludge was made to immobilize the microorganism using polyvinyl alcohol as entrapment agent. The immobilized microorganism degraded DBP at different conditions. Results The appropriate conditions to degrade DBP by the dominant bacteria were: degradation time, 32 h; DBP concentration, 200 mg/L; rate of shaking incubator, 100 r/min; pH, 7 and temperature, 30℃. DBP could be degraded by more than 95% under such conditions. The bacteria were identified as pseudomonas. The proliferated immobilized microorganisms degraded DBP more effectively and more adapted to temperature and pH than the free acclimated activated sludge. Conclusion One strain of DBP degradation dominant bacteria was separated from the acclimatized activated sludge. It could grow with DBP as the only carbon source and energy, and degraded DBP effectively. After having been immobilized and proliferated, the dominant bacteria could keep a higher biological activity and degrade DBP more effectively than activated sludge.
基金Supported by the Science and Technology Planning Project of Guangdong Province of China(2008B080701012)the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education of Chinathe Leading Academic Discipline Program of Phase-3 of"Project-211"for South China Agricultural University(2009B010100001)
文摘Biodegradation of 2,2-bis(p-chlorophenyl)-1,1,1-trichloroethane(DDT)in soil by laccase extract from white rot fungi under different experimental conditions was investigated.DDTs,which stands for the sum of p,p′-DDE,o,p′-DDT,p,p′-DDD and p,p′-DDT in soil was degraded efficiently,and the residue decreased rapidly during the first 15 days and then slowly during the period of 16-25 days.The biodegradation of DDTs in soil fitted the pseudo-first-order kinetics.For 5,10,15 and 25 days of incubation with laccase,the residue of DDTs in soil under different atmospheres was decreased by 20%-33%,34%-52%,41%-61%and 41%-69%respectively,under different flooding conditions that was decreased by 12%-17%,17%-30%,30%-45%and 35%-52%respectively, and for different soils that was decreased by 25%-34%,39%-53%,44%-58%and 47%-62%respectively.The half-life of DDTs in soil ranged from 15.07 to 32.95 days under O2,air or N2 atmospheres,23.07 to 40.71 days under different flooding conditions,and 18.78 to 28.88 days for different soils.Laccase is an efficient and safe agent for bioremediation of DDT-contaminated soil.
文摘Applying dispersants to spilled crude oil results in an oil in water dispersion of microscopic oil droplets that soon dilutes to levels below 1 ppm oil. These levels are substantially below those known to induce acute toxicity in 96-hour tests. We show here that oil hydrocarbons are biodegraded very rapidly in such situations (50% loss in 4 days in this experiment), and that no increase in acute toxicity to mysids (Americamysis bahia) is seen during this biodegradation, or over the following 20 days as the oil is further degraded (78% loss of detectable hydrocarbons in this experiment).
文摘Chlorobenzoic Acids are toxic organic compounds largely distributed in soils and sediments. They can be degraded to various products by microorgans. This paper is a review of the literature on biodegradability of the chlorobenzoic acids. The degradation pathways, degradation genes, role of transposable elements, and construction of strains are discussed. A brief introduction is given on the environmental impacts and the pollution control.
基金supported by Natural Science Foundation of China(41907357)Natural Science Foundation of Shandong(ZR2019PC048)the Key R&D project of Shandong Province(2021TZXD007).
文摘Bioremediation of organophosphorus pesticides in contaminated foodstuffs using probiotics has been increasingly under the spotlight in recent years,though the biodegradation mechanism and derived intermediate products remain unclear.This study aimed to help fill this knowledge gap and examined the degradation mechanism of organophosphorus pesticide,chlorpyrifos,in milk by Lactobacillus delbrueckii ssp.bulgaricus using gas chromatography-tandem mass spectrometry(GC-MS/MS)combined with transcriptome analysis.After the strain was cultured for 20 h in the presence of chlorpyrifos,differential expressions of 383 genes were detected,including genes probably implicated during chlorpyrifos degradation such as those related to hydrolase,phosphoesterase,diphosphatase,oxidoreductase,dehydratase,as well as membrane transporters.GC-MS/MS analysis revealed the changes of secondary metabolites in L.bulgaricus during milk fermentation due to chlorpyrifos stress.6-Methylhexahydro-2H-azepin-2-one,2,6-dihydroxypyridine and methyl 2-aminooxy-4-methylpentanoate as intermediates,along with the proposed pathways,might be involved in chlorpyrifos biodegradation by L.bulgaricus.
基金funded by the National Natural Science Foundation of China(No.42272160,No.41502133).
文摘The sensitivity of biodegradation on diamondoids was investigated using a series of biodegraded oil samples from the Ronier tectonic unit of Bongor Basin,Chad.The results suggest that diamondoids,including adamantanes(As)and diamantanes(Ds),are relatively resistant to biodegradation and obvious biodegradation was observed in oils with a Peters-Moldowan(PM)biodegradation rank of 6 or more.Overall,the sensibility of biodegradation on diamondoids is generally similar to hopanes and regular steranes.As biodegradation evolves,the changes in concentration and components of diamondoids show that the biodegradation process is selective and stepwise.The significant increase of MD/MA and DMD/DMA for oils with a PM ranking 6^(+) indicates that diamantanes are generally more resistant to biodegradation than adamantanes.The similar trends of DMA/MA,EA/MA,MD/D,DMD/MD and other relevant indexes,show that higher alkylation homologs are more resistant to biodegradation.The commonly used diamondoid ratios,such as MAI,EAI,MDI and DMID-1,are obviously affected by biodegradation at the stage of high-level biodegradation,which may indicate that these ratios should be used with caution in case of severely degraded oils.
基金the Agricultural Science and Technology Innovation Project of Jilin Province(Postdoctoral Fund Project)(CXGC2021RCB007)Agricultural Science and Technology Innovation Project of Jilin Province(Introduction of Doctor and High-Level Talents Project)(CXGC2022RCG008)+1 种基金Jilin Province Science and Technology Development Project(20200403014SF)Agricultural Science and Technology Innovation Project of Jilin Province(CXGC2021ZY036).
文摘Soil salinization is the main factor that threatens the growth and development of plants and limits the increase of yield.It is of great significance to study the key soil environmental factors affecting plant root traits to reveal the adaptation strategies of plants to saline-alkaline-stressed soil environments.In this study,the root biomass,root morphological parameters and root mineral nutrient content of two alfalfa cultivars with different sensitivities to alkaline stress were analyzed with black soil as the control group and the mixed saline-alkaline soil with a ratio of 7:3 between black soil and saline-alkaline soil as the saline-alkaline treatment group.At the same time,the correlation analysis of soil salinity indexes,soil nutrient indexes and the activities of key enzymes involved in soil carbon,nitrogen and phosphorus cycles was carried out.The results showed that compared with the control group,the pH,EC,and urease(URE)of the soil surrounding the roots of two alfalfa cultivars were significantly increased,while soil total nitrogen(TN),total phosphorus(TP),organic carbon(SOC),andα-glucosidase activity(AGC)were significantly decreased under saline-alkaline stress.There was no significant difference in root biomass and root morphological parameters of saline-alkaline tolerant cultivar GN under saline-alkaline stress.The number of root tips(RT),root surface area(RS)and root volume(RV)of AG were reduced by 61.16%,44.54%,and 45.31%,respectively,compared with control group.The ratios of K^(+)/Na^(+),Ca^(2+)/Na^(+)and Mg^(2+)/Na^(+)of GN were significantly higher than those of AG(p<0.05).The root fresh weight(RFW)and dry weight(RDW),root length(RL),RV and RT of alfalfa were positively regulated by soil SOC and TN,but negatively regulated by soil pH,EC,and URE(p<0.01).Root Ca^(2+)/Na+ratio was significantly positively correlated with soil TN,TP and SOC(p<0.01).The absorption of Mg and Ca ions in roots is significantly negatively regulated by soilβ-glucosidase activity(BGC)and acid phosphatase activity(APC)(p<0.05).This study improved knowledge of the relationship between root traits and soil environmental factors and offered a theoretical framework for elucidating how plant roots adapt to saline-alkaline stressed soil environments.
基金the financial support from the Postdoctoral Science Foundation of China(2022M720131)Spring Sunshine Collaborative Research Project of the Ministry of Education(202201660)+3 种基金Youth Project of Gansu Natural Science Foundation(22JR5RA542)General Project of Gansu Philosophy and Social Science Foundation(2022YB014)National Natural Science Foundation of China(72034003,72243006,and 71874074)Fundamental Research Funds for the Central Universities(2023lzdxjbkyzx008,lzujbky-2021-sp72)。
文摘Since the carbon neutrality target was proposed,many countries have been facing severe challenges to carbon emission reduction sustainably.This study is conducted using a tripartite evolutionary game model to explore the impact of the central environmental protection inspection(CEPI)on driving carbon emission reduction,and to study what factors influence the strategic choices of each party and how they interact with each other.The research results suggest that local governments and manufacturing enterprises would choose strategies that are beneficial to carbon reduction when CEPI increases.When the initial willingness of all parties increases 20%,50%—80%,the time spent for the whole system to achieve stability decreases from 100%,60%—30%.The evolutionary result of“thorough inspection,regulation implementation,low-carbon management”is the best strategy for the tripartite evolutionary game.Moreover,the smaller the cost and the larger the benefit,the greater the likelihood of the three-party game stability strategy appears.This study has important guiding significance for other developing countries to promote carbon emission reduction by environmental policy.
基金supported by the Guangxi Natural Science Foundation(2020GXNSFAA297266)Doctoral Research Foundation of Guilin University of Technology(GUTQDJJ2007059)Guangxi Hidden Metallic Mineral Exploration Key Laboratory。
文摘For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.
文摘In this paper, biochar (BC) was used as raw material, activated by deionizing aqueous solution, NaCl solution, CA solution and HCl solution respectively. Epichlorohydrin (EPI) was used as crosslinking agent, and β-cyclodextrin (β-CD) was used to modify biochar (BC). The prepared modified biochar materials were labeled with β-CDBC, β-CDBC-Na, β-CDBC-CA and β-CDBC-H, respectively. The infrared spectrum, X-ray diffractometer, scanning electron microscope and specific surface area of the four modified materials were tested. The results showed that the C-O stretching vibration peak at 1020 cm<sup>−</sup><sup>1</sup> of the modified materials was slightly offset compared with that of biochar. The characteristic absorption peaks of XRD pattern decrease obviously at 2θ = 26.7˚ and 29.5˚. It can be obviously observed on the electron microscope image that the surface is loaded or formed clathrates, and BET data and graphs also show that the specific surface area of the modified biochar is larger. Therefore, β-cyclodextrin successfully modified biochar and formed clathrates on the surface of biochar or was loaded in the pore structure of biochar, especially β-CDBC-CA achieved better modification effect. Because biochar and β-cyclodextrin raw materials are cheap, easy to prepare and green, and less prone to secondary pollution, it has a good advantage in environmental governance.
文摘In this paper, through the perspective of Merowitz’s media environmentalism, following the research path of media-scene-behaviour, and based on the results of the national reading survey released by the China Press and Publication Research Institute in the past ten years (2013-2022), we analyse the characteristics of national reading behaviours, explore the reasons for the changes in national reading behaviour in terms of technology, media, and scenarios. It also discusses the future trend of national reading behaviour and the promotion of national reading activities, and puts forward certain countermeasures from the government, schools and the society to make joint efforts to promote national reading.
基金Natural Science Foundation of Hebei Province,Grant/Award Number:F2021203097China Postdoctoral Science Foundation,Grant/Award Numbers:2021M702756,2023T160551National Natural Science Foundation of China,Grant/Award Numbers:51971245,52022088。
文摘Li–CO_(2)/O_(2)batteries,a promising energy storage technology,not only provide ultrahigh discharge capacity but also capture CO_(2)and turn it into renewable energy.Their electrochemical reaction pathways'ambiguity,however,creates a hurdle for their practical application.This study used copper selenide(CuSe)nanosheets as the air cathode medium in an environmental transmission electron microscope to in situ study Li–CO_(2)/O_(2)(mix CO_(2)as well as O_(2)at a volume ratio of 1:1)and Li–O_(2)batteries as well as Li–CO_(2)batteries.Primary discharge reactions take place successively in the Li–CO_(2)/O_(2)–CuSe nanobattery:(I)4Li^(+)+O_(2)+4e^(−)→2Li_(2)O;(II)Li_(2)O+CO_(2)→Li_(2)CO_(3).The charge reaction proceeded via(III)2Li_(2)CO_(3)→4Li^(+)+2CO_(2)+O_(2)+4e^(−).However,Li–O_(2)and Li–CO_(2)nanobatteries showed poor cycling stability,suggesting the difficulty in the direct decomposition of the discharge product.The fluctuations of the Li–CO_(2)/O_(2)battery's electrochemistry were also shown to depend heavily on O_(2).The CuSe‐based Li–CO_(2)/O_(2)battery showed exceptional electrochemical performance.The Li^–CO_(2)/O_(2)battery offered a discharge capacity apex of 15,492 mAh g^(−1) and stable cycling 60 times at 100 mA g^(−1).Our research offers crucial insight into the electrochemical behavior of Li–CO_(2)/O_(2),Li–O_(2),and Li–CO_(2)nanobatteries,which may help the creation of high‐performance Li–CO_(2)/O_(2)batteries for energy storage applications.
基金This work was supported by the Qinchuangyuan Project of Shaanxi Province,China(QCYRCXM-2022-145)the Major Project of the Key Research Base of Humanities and Social Sciences of the Ministry of Education,China(22JJD790052)+1 种基金the Chinese Universities Scientific Fund(Z1010422003)the National Natural Science Foundation of China(72373117).
文摘With increasing population and changing demographics,food consumption has experienced a significant transition in quantity and quality.However,a dearth of knowledge remains regarding its environmental impacts and how it responds to demographic dynamics,particularly in emerging economies like China.Using the two-stage Quadratic Almost Demand System(QUAIDS)model,this study empirically examines the impact of demographic dynamics on food consumption and its environmental outcomes based on the provincial data from 2000 to 2020 in China.Under various scenarios,according to changes in demographics,we extend our analysis to project the long-term trend of food consumption and its environmental impacts,including greenhouse gas(GHG)emissions,water footprint(WF),and land appropriation(LA).The results reveal that an increase in the proportion of senior people significantly decreases the consumption of grain and livestock meat and increases the consumption of poultry,egg,and aquatic products,particularly for urban residents.Moreover,an increase in the proportion of males in the population leads to higher consumption of poultry and aquatic products.Correspondingly,in the current scenario of an increased aging population and sex ratio,it is anticipated that GHG emissions,WF,and LA are likely to decrease by 1.37,2.52,and 3.56%,respectively.More importantly,in the scenario adhering to the standards of nutritional intake according to the Dietary Guidelines for Chinese Residents in 2022,GHG emissions,WF,and LA in urban areas would increase by 12.78,20.94,and 18.32%,respectively.Our findings suggest that changing demographics should be considered when designing policies to mitigate the diet-environment-health trilemma and achieve sustainable food consumption.
基金the National Convergence Research of Scientific Challenges through the National Research Foundation of Korea(NRF)the DGIST R&D Program(No.2021M3F7A1082275 and 23-CoE-BT-02)funded by the Ministry of Science and ICT.
文摘Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation.Metal-based degradable micromotor composed of magnesium(Mg),zinc(Zn),and iron(Fe)have promise due to their nontoxic fuel-free propulsion,favorable biocompatibility,and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media,efficient cargo delivery and favorable biocompatibility.A noteworthy number of degradable metal-based micromotors employ bubble propulsion,utilizing water as fuel to generate hydrogen bubbles.This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications.In addition,understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance.Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor.Here we review the design and recent advancements of metallic degradable micromotors.Furthermore,we describe the controlled degradation,efficient in vivo drug delivery,and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications.Moreover,we discuss micromotors’efficacy in detecting and destroying environmental pollutants.Finally,we address the limitations and future research directions of degradable metallic micromotors.
基金supported by the National Natural Science Foundation of China(No.21676065 and No.52373262)China Postdoctoral Science Foundation(2021MD703944,2022T150782).
文摘Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
基金financial support from the National Key Research and Development Program of China(2019YFC0605502)the National Natural Science Foundation of China(42302156)+1 种基金the Major Projects of Petro China Science and Technology Fund(2021DJ0206)the Natural Science Foundation of China University of Petroleum(22CX06046A)。
文摘The organic-rich mudstones and dolostones of the Permian Fengcheng Formation(Fm.)are typically alkaline lacustrine source rocks,which are typified by impressively abundantβ-carotane.Abundant β-carotane has been well acknowledged as an effective indicator of biological sources or depositional environments.However,the specific biological sources of β-carotane and the coupling control of biological sources and environmental factors on the enrichment of β-carotane in the Fengcheng Fm.remains obscure.Based on a comprehensive investigation of the bulk,molecular geochemistry,and organic petrology of sedimentary rocks and the biochemistry of phytoplankton in modern alkaline lakes,we proposed a new understanding of the biological precursors of β-carotane and elucidated the enrichment mechanism of β-carotane in the Fengcheng Fm.The results show that the biological precursors crucially control the enrichment of β-carotane in the Fengcheng Fm.The haloalkaliphilic cyanobacteria are the primary biological sources of β-carotane,which is suggested by a good positive correlation between the 2-methylhopane index,7-+8-methyl heptadecanes/C_(max),C_(29%),and β-carotane/C_(max)in sedimentary rocks and the predominance of cyanobacteria with abundantβ-carotene in modern alkaline lakes.The enrichment of β-carotane requires the reducing condition,and the paleoredox state that affects the enrichment of β-carotane appears to have a threshold.The paleoclimate conditions do not considerably impact the enrichment of β-carotane,but they have some influence on the water's paleosalinity by affecting evaporation and precipitation.While it does not directly affect the enrichment of β-carotane in the Fengcheng Fm.,paleosalinity does have an impact on the cyanobacterial precursor supply and the preservation conditions.
基金supported by the National Natural Science Foundation of China,Nos.82071190 and 82371438(to LC)Innovative Strong School Project of Guangdong Medical University,No.4SG21230G(to LC)Scientific Research Foundation of Guangdong Medical University,No.GDMUM2020017(to CL)。
文摘Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments.
文摘Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.
基金Supported by the Guangdong Province Basic and Applied Basic Research Fund Project(No.2020A1515110826)the National Natural Science Foundation of China(No.42006115)the Major Scientific and Technological Projects of Hainan Province(No.ZDKJ2021036)。
文摘Manganese superoxide dismutase(MnSOD)is an antioxidant that exists in mitochondria and can effectively remove superoxide anions in mitochondria.In a dark,high-pressure,and low-temperature deep-sea environment,MnSOD is essential for the survival of sea cucumbers.Six MnSODs were identified from the transcriptomes of deep and shallow-sea sea cucumbers.To explore their environmental adaptation mechanism,we conducted environmental selection pressure analysis through the branching site model of PAML software.We obtained night positive selection sites,and two of them were significant(97F→H,134K→V):97F→H located in a highly conservative characteristic sequence,and its polarity c hange might have a great impact on the function of MnSOD;134K→V had a change in piezophilic a bility,which might help MnSOD adapt to the environment of high hydrostatic pressure in the deepsea.To further study the effect of these two positive selection sites on MnSOD,we predicted the point mutations of F97H and K134V on shallow-sea sea cucumber by using MAESTROweb and PyMOL.Results show that 97F→H,134K→V might improve MnSOD’s efficiency of scavenging superoxide a nion and its ability to resist high hydrostatic pressure by moderately reducing its stability.The above results indicated that MnSODs of deep-sea sea cucumber adapted to deep-sea environments through their amino acid changes in polarity,piezophilic behavior,and local stability.This study revealed the correlation between MnSOD and extreme environment,and will help improve our understanding of the organism’s adaptation mechanisms in deep sea.
文摘Asia stands out as the most populous and geographically diverse region globally.The pressing issues of water resource development and the resulting ecological impacts are exacerbated by the region's rapid population growth and economic expansion.Groundwater,a vital source of water in Asia,faces significant disparities in distribution and suffers from unsustainable exploitation practices.This study applies groundwater system theory and categorizes Asia into 11 primary groundwater systems and 36 secondary ones,based on intercontinental geological structures,climate,terrain,and hydrogeological characteristics.As of the end of 2010,Asia's assessed groundwater resources totalled 4.677×10^(9) m^(3)/a,with exploitable resources amounting to 3.274×10^(9) m^(3)/a.By considering the geological environmental impacts of groundwater development and the distinctive characteristics of terrain and landforms,six categories of effect zones with varying distribution patterns are identified.The current research on Asia's groundwater resources,environmental dynamics,and human impacts aims to provide a theoretical foundation for sustainable groundwater management and environmental conservation in the region.