In the establishment of differential equations,the determination of time-varying parameters is a difficult problem,especially for equations related to life activities.Thus,we propose a new framework named BioE-PINN ba...In the establishment of differential equations,the determination of time-varying parameters is a difficult problem,especially for equations related to life activities.Thus,we propose a new framework named BioE-PINN based on a physical information neural network that successfully obtains the time-varying parameters of differential equations.In the proposed framework,the learnable factors and scale parameters are used to implement adaptive activation functions,and hard constraints and loss function weights are skillfully added to the neural network output to speed up the training convergence and improve the accuracy of physical information neural networks.In this paper,taking the electrophysiological differential equation as an example,the characteristic parameters of ion channel and pump kinetics are determined using BioE-PINN.The results demonstrate that the numerical solution of the differential equation is calculated by the parameters predicted by BioE-PINN,the RootMean Square Error(RMSE)is between 0.01 and 0.3,and the Pearson coefficient is above 0.87,which verifies the effectiveness and accuracy of BioE-PINN.Moreover,realmeasuredmembrane potential data in animals and plants are employed to determine the parameters of the electrophysiological equations,with RMSE 0.02-0.2 and Pearson coefficient above 0.85.In conclusion,this framework can be applied not only for differential equation parameter determination of physiological processes but also the prediction of time-varying parameters of equations in other fields.展开更多
We report on electrodes fabricated with EDOT-Pyrrole copolymer through electrophoretic deposition and used for recording and sensing bio-electrical signals. We measured the electrical properties of the copolymer depos...We report on electrodes fabricated with EDOT-Pyrrole copolymer through electrophoretic deposition and used for recording and sensing bio-electrical signals. We measured the electrical properties of the copolymer deposited on a stainless-steel substrate, and we performed Cyclic Voltammetry (CV) and Scanning Electron Microscopy (SEM) studies to characterize the morphological properties and copolymer distribution on the metal surface. We found that electrodes fabricated with EDOT-Pyrrole copolymer exhibit a high signal-to-noise ratio as well as an accurate and stable conductivity compared with other commonly used electroconductive polymers. Stainless-steel-coated EDOT-Pyrrole electrodes are suitable to record electrocardiograms in humans with high resolution comparable to standard silver-electrodes.展开更多
In vivo monitoring of bioelectrical and biochemical signals with implanted electrodes has received great interest over the past decades.However,this faces huge challenges because of the severe mechanical mismatch betw...In vivo monitoring of bioelectrical and biochemical signals with implanted electrodes has received great interest over the past decades.However,this faces huge challenges because of the severe mechanical mismatch between conventional rigid electrodes and soft biological tissues.In recent years,the emergence of flexible and stretchable electrodes offers seamless and conformable biological-electronic interfaces and has demonstrated significant advantages for in vivo electrochemical and electrophysiological monitoring.This review first summarizes the strategies for electrode fabrication from the point of substrate and conductive materials.Next,recent progress in electrode functionalization for improved performance is presented.Then,the advances of flexible and stretchable electrodes in exploring bioelectrical and biochemical signals are introduced.Finally,we present some challenges and perspectives ranging from electrode fabrication to application.展开更多
Bioelectrical signals can reflect physiological state of organs or tissues in plants and have a significant potential value in research of plant stress tolerance.In order to study the relationship between environment ...Bioelectrical signals can reflect physiological state of organs or tissues in plants and have a significant potential value in research of plant stress tolerance.In order to study the relationship between environment factors and electrical signals in plant,a portable multichannel physiological signal acquisition system which relevant in plant physiology research was developed.Environment parameters and electrical signals can be measured in different channels by the acquisition system simultaneously and the measurement data will be displayed in an embedded integrated touch screen which is the system processing core.The system was validated to be stable and reliable after the calibration and repeated experiments of recording electrical signals in Helianthus annuus L.展开更多
基金This work was supported by the National Natural Science Foundation of China under 62271488 and 61571443.
文摘In the establishment of differential equations,the determination of time-varying parameters is a difficult problem,especially for equations related to life activities.Thus,we propose a new framework named BioE-PINN based on a physical information neural network that successfully obtains the time-varying parameters of differential equations.In the proposed framework,the learnable factors and scale parameters are used to implement adaptive activation functions,and hard constraints and loss function weights are skillfully added to the neural network output to speed up the training convergence and improve the accuracy of physical information neural networks.In this paper,taking the electrophysiological differential equation as an example,the characteristic parameters of ion channel and pump kinetics are determined using BioE-PINN.The results demonstrate that the numerical solution of the differential equation is calculated by the parameters predicted by BioE-PINN,the RootMean Square Error(RMSE)is between 0.01 and 0.3,and the Pearson coefficient is above 0.87,which verifies the effectiveness and accuracy of BioE-PINN.Moreover,realmeasuredmembrane potential data in animals and plants are employed to determine the parameters of the electrophysiological equations,with RMSE 0.02-0.2 and Pearson coefficient above 0.85.In conclusion,this framework can be applied not only for differential equation parameter determination of physiological processes but also the prediction of time-varying parameters of equations in other fields.
文摘We report on electrodes fabricated with EDOT-Pyrrole copolymer through electrophoretic deposition and used for recording and sensing bio-electrical signals. We measured the electrical properties of the copolymer deposited on a stainless-steel substrate, and we performed Cyclic Voltammetry (CV) and Scanning Electron Microscopy (SEM) studies to characterize the morphological properties and copolymer distribution on the metal surface. We found that electrodes fabricated with EDOT-Pyrrole copolymer exhibit a high signal-to-noise ratio as well as an accurate and stable conductivity compared with other commonly used electroconductive polymers. Stainless-steel-coated EDOT-Pyrrole electrodes are suitable to record electrocardiograms in humans with high resolution comparable to standard silver-electrodes.
基金This work was supported by the National Natural Science Foundation of China(Grant 22122408)the National Key R&D Program of China(2022YFA1104802).
文摘In vivo monitoring of bioelectrical and biochemical signals with implanted electrodes has received great interest over the past decades.However,this faces huge challenges because of the severe mechanical mismatch between conventional rigid electrodes and soft biological tissues.In recent years,the emergence of flexible and stretchable electrodes offers seamless and conformable biological-electronic interfaces and has demonstrated significant advantages for in vivo electrochemical and electrophysiological monitoring.This review first summarizes the strategies for electrode fabrication from the point of substrate and conductive materials.Next,recent progress in electrode functionalization for improved performance is presented.Then,the advances of flexible and stretchable electrodes in exploring bioelectrical and biochemical signals are introduced.Finally,we present some challenges and perspectives ranging from electrode fabrication to application.
基金This research was supported by the Specialized Research Fund for the Doctoral Program of Higher Education(20130008110035)the National Key Scientific Instrument and Equipment Development Projects(2011YQ080052)the National Natural Science Foundation of China(61072016)。
文摘Bioelectrical signals can reflect physiological state of organs or tissues in plants and have a significant potential value in research of plant stress tolerance.In order to study the relationship between environment factors and electrical signals in plant,a portable multichannel physiological signal acquisition system which relevant in plant physiology research was developed.Environment parameters and electrical signals can be measured in different channels by the acquisition system simultaneously and the measurement data will be displayed in an embedded integrated touch screen which is the system processing core.The system was validated to be stable and reliable after the calibration and repeated experiments of recording electrical signals in Helianthus annuus L.