Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different ...Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different molecular mass (3 kD,10 kD,40 kD,70 kD,2 000 kD) were used as a series of diffusion probes. Streptococcus mutans,Streptococcus sanguinis,Actinomyces naeslundii and Fusobacterium nucleatum were used as inocula for biofilm formation. The diffusion processes of different probes through the in vitro biofilm were recorded with a confocal laser microscope. Results Mathematical function of biofilm penetration was constructed on the basis of the inverse problem method. Based on this function,not only the relationship between average concentration of steady-state and molecule weights can be analyzed,but also that between penetrative time and molecule weights. Conclusion This can be used to predict the effective concentration and the penetrative time of anti-biofilm medicines that can diffuse through oral biofilm. Further-more,an improved model for large molecule is proposed by considering the exchange time at the upper boundary of the dental biofilm.展开更多
Fluid flow past the biofilm surface can bring external force to biofilm which could result in biofilm deformation and detachment. The flow velocity have significant effect on determining biofilm deformation and detach...Fluid flow past the biofilm surface can bring external force to biofilm which could result in biofilm deformation and detachment. The flow velocity have significant effect on determining biofilm deformation and detachment. In this work, finite element method was adapted to study the flow induced deformation of biofilm in varied flow conditions.展开更多
The pathogenic effect of Staphylococci is due to extra-cellular factors and properties such as adherence and biofilm production. The nature of the biofilm and the physiological properties of biofilm-producing bacteria...The pathogenic effect of Staphylococci is due to extra-cellular factors and properties such as adherence and biofilm production. The nature of the biofilm and the physiological properties of biofilm-producing bacteria result in an inherent antibiotic resistance and require further investigation. Two hundred and sixty Staphylococcal strains were cultured from 600 clinical specimens obtained from hospitalized patients. Among these, 155 were identified as coagulase-positive (CPS) and 105 as coagulase-negative (CNS) staphylococci. Staphylococcal strains were tested for biofilm production using the tissue culture plate (TCP) method. TCP detection showed that of the 155 CPS, 124 (80%) were biofilm producers, while 63 (60%) of the 105 CNS were biofilm producers. Biofilm-producing strains were scanned by scanning electron microscope (SEM) to confirm biofilm formation, study biofilm production, and examine antibiotic effects on biofilm formation. Disc diffusion method was used to study resistance of planktonic and biofilm-forming cells to antibiotics. Planktonic cells were less resistant to antibiotics than biofilm-forming cells. Microbroth dilution method and a new BioTimer assay were used to determine antibiotic MICs affecting planktonic and biofilm cells. Both methods showed that the MICs for planktonic cells were less than that for biofilm cells. The BioTimer assay was therefore found to be sensitive, accurate, and reliable, with results in agreement with those from the broth dilution method and SEM.展开更多
基金supported by a grant from the National Natural Science Foundation of China (NSFC) No. 81070826/30872886/30400497Sponsored by Shanghai Rising-Star Program No. 09QA1403700+1 种基金funded by Shanghai Leading Academic Discipline Project (Project Number: S30206)the Science and Technology Commission of Shanghai (08DZ2271100)
文摘Aim The purpose of this study was to develop a mathe-matical model to quantitatively describe the passive trans-port of macromolecules within dental biofilms. Methodology Fluorescently labeled dextrans with different molecular mass (3 kD,10 kD,40 kD,70 kD,2 000 kD) were used as a series of diffusion probes. Streptococcus mutans,Streptococcus sanguinis,Actinomyces naeslundii and Fusobacterium nucleatum were used as inocula for biofilm formation. The diffusion processes of different probes through the in vitro biofilm were recorded with a confocal laser microscope. Results Mathematical function of biofilm penetration was constructed on the basis of the inverse problem method. Based on this function,not only the relationship between average concentration of steady-state and molecule weights can be analyzed,but also that between penetrative time and molecule weights. Conclusion This can be used to predict the effective concentration and the penetrative time of anti-biofilm medicines that can diffuse through oral biofilm. Further-more,an improved model for large molecule is proposed by considering the exchange time at the upper boundary of the dental biofilm.
文摘Fluid flow past the biofilm surface can bring external force to biofilm which could result in biofilm deformation and detachment. The flow velocity have significant effect on determining biofilm deformation and detachment. In this work, finite element method was adapted to study the flow induced deformation of biofilm in varied flow conditions.
文摘The pathogenic effect of Staphylococci is due to extra-cellular factors and properties such as adherence and biofilm production. The nature of the biofilm and the physiological properties of biofilm-producing bacteria result in an inherent antibiotic resistance and require further investigation. Two hundred and sixty Staphylococcal strains were cultured from 600 clinical specimens obtained from hospitalized patients. Among these, 155 were identified as coagulase-positive (CPS) and 105 as coagulase-negative (CNS) staphylococci. Staphylococcal strains were tested for biofilm production using the tissue culture plate (TCP) method. TCP detection showed that of the 155 CPS, 124 (80%) were biofilm producers, while 63 (60%) of the 105 CNS were biofilm producers. Biofilm-producing strains were scanned by scanning electron microscope (SEM) to confirm biofilm formation, study biofilm production, and examine antibiotic effects on biofilm formation. Disc diffusion method was used to study resistance of planktonic and biofilm-forming cells to antibiotics. Planktonic cells were less resistant to antibiotics than biofilm-forming cells. Microbroth dilution method and a new BioTimer assay were used to determine antibiotic MICs affecting planktonic and biofilm cells. Both methods showed that the MICs for planktonic cells were less than that for biofilm cells. The BioTimer assay was therefore found to be sensitive, accurate, and reliable, with results in agreement with those from the broth dilution method and SEM.