This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The mai...This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.展开更多
Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective op...Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do.展开更多
A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO c...A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.展开更多
Purpose:As to January 11,2021,coronavirus disease(COVID-19)has caused more than 2 million deaths worldwide.Mainly diagnostic methods of COVID-19 are:(i)nucleic acid testing.This method requires high requirements on th...Purpose:As to January 11,2021,coronavirus disease(COVID-19)has caused more than 2 million deaths worldwide.Mainly diagnostic methods of COVID-19 are:(i)nucleic acid testing.This method requires high requirements on the sample testing environment.When collecting samples,staff are in a susceptible environment,which increases the risk of infection.(ii)chest computed tomography.The cost of it is high and some radiation in the scan process.(iii)chest X-ray images.It has the advantages of fast imaging,higher spatial recognition than chest computed tomography.Therefore,our team chose the chest X-ray images as the experimental dataset in this paper.Methods:We proposed a novel framework—BEVGG and three methods(BEVGGC-I,BEVGGC-II,and BEVGGC-III)to diagnose COVID-19 via chest X-ray images.Besides,we used biogeography-based optimization to optimize the values of hyperparameters of the convolutional neural network.Results:The experimental results show that the OA of our proposed three methods are 97.65%±0.65%,94.49%±0.22%and 94.81%±0.52%.BEVGGC-I has the best performance of all methods.Conclusions:The OA of BEVGGC-I is 9.59%±1.04%higher than that of state-of-the-art methods.展开更多
In recent years,Parkinson’s Disease(PD)as a progressive syndrome of the nervous system has become highly prevalent worldwide.In this study,a novel hybrid technique established by integrating a Multi-layer Perceptron ...In recent years,Parkinson’s Disease(PD)as a progressive syndrome of the nervous system has become highly prevalent worldwide.In this study,a novel hybrid technique established by integrating a Multi-layer Perceptron Neural Network(MLP)with the Biogeography-based Optimization(BBO)to classify PD based on a series of biomedical voice measurements.BBO is employed to determine the optimal MLP parameters and boost prediction accuracy.The inputs comprised of 22 biomedical voice measurements.The proposed approach detects two PD statuses:0-disease status and 1-good control status.The performance of proposed methods compared with PSO,GA,ACO and ES method.The outcomes affirm that the MLP-BBO model exhibits higher precision and suitability for PD detection.The proposed diagnosis system as a type of speech algorithm detects early Parkinson’s symptoms,and consequently,it served as a promising new robust tool with excellent PD diagnosis performance.展开更多
A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives...A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives, and the distance from the obstacles was constraint. In CMBOA, a new migration operator with disturbance factor was designed and applied to the feasible population to generate many more non-dominated feasible individuals; meanwhile, some infeasible individuals nearby feasible region were recombined with the nearest feasible ones to approach the feasibility. Compared with classical multi-objective evolutionary algorithms, the current study indicates that CM- BOA has better performance for RPP.展开更多
Biogeography-based optimization(BBO),a natureinspired optimization algorithm(NIOA),has exhibited a huge potential in optimization.In BBO,the good solutions have a large probability to share information with poor solut...Biogeography-based optimization(BBO),a natureinspired optimization algorithm(NIOA),has exhibited a huge potential in optimization.In BBO,the good solutions have a large probability to share information with poor solutions,while poor solutions have a large probability to accept the information from others.In original BBO,calculating for migration rates is based on solutions' ranking.From the ranking,it can be known that which solution is better and which one is worse.Based on the ranking,the migration rates are calculated to help BBO select good features and poor features.The differences among results can not be reflected,which will result in an improper migration rate calculating.Two new ways are proposed to calculate migration rates,which is helpful for BBO to obtain a suitable assignment of migration rates and furthermore affect algorithms ' performance.The ranking of solutions is no longer integers,but decimals.By employing the strategies,the ranking can not only reflect the orders of solutions,but also can reflect more details about solutions' distances.A set of benchmarks,which include 14 functions,is employed to compare the proposed approaches with other algorithms.The results demonstrate that the proposed approaches are feasible and effective to enhance BBO's performance.展开更多
The COVID-19 pandemic has created a major challenge for countries all over the world and has placed tremendous pressure on their public health care services.An early diagnosis of COVID-19 may reduce the impact of the ...The COVID-19 pandemic has created a major challenge for countries all over the world and has placed tremendous pressure on their public health care services.An early diagnosis of COVID-19 may reduce the impact of the coronavirus.To achieve this objective,modern computation methods,such as deep learning,may be applied.In this study,a computational model involving deep learning and biogeography-based optimization(BBO)for early detection and management of COVID-19 is introduced.Specifically,BBO is used for the layer selection process in the proposed convolutional neural network(CNN).The computational model accepts images,such as CT scans,X-rays,positron emission tomography,lung ultrasound,and magnetic resonance imaging,as inputs.In the comparative analysis,the proposed deep learning model CNNis compared with other existingmodels,namely,VGG16,InceptionV3,ResNet50,and MobileNet.In the fitness function formation,classification accuracy is considered to enhance the prediction capability of the proposed model.Experimental results demonstrate that the proposed model outperforms InceptionV3 and ResNet50.展开更多
PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the pre...PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the presented hybrid metaheuristic algorithms for a class of time-delayed unstable systems is described in this study when applicable to the problems of PID controller and Smith PID controller.The Direct Multi Search(DMS)algorithm is utilised in this research to combine the local search ability of global heuristic algorithms to tune a PID controller for a time-delayed unstable process model.A Metaheuristics Algorithm such as,SA(Simulated Annealing),MBBO(Modified Biogeography Based Opti-mization),BBO(Biogeography Based Optimization),PBIL(Population Based Incremental Learning),ES(Evolution Strategy),StudGA(Stud Genetic Algo-rithms),PSO(Particle Swarm Optimization),StudGA(Stud Genetic Algorithms),ES(Evolution Strategy),PSO(Particle Swarm Optimization)and ACO(Ant Col-ony Optimization)are used to tune the PID controller and Smith predictor design.The effectiveness of the suggested algorithms DMS-SA,DMS-BBO,DMS-MBBO,DMS-PBIL,DMS-StudGA,DMS-ES,DMS-ACO,and DMS-PSO for a class of dead-time structures employing PID controller and Smith predictor design controllers is illustrated using unit step set point response.When compared to other optimizations,the suggested hybrid metaheuristics approach improves the time response analysis when extended to the problem of smith predictor and PID controller designed tuning.展开更多
The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fi...The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.展开更多
Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In litera...Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In literature, researchers and practitioners proposed numerous approaches for automatic e-mail spam detection. Learning-based filtering is one of the important approaches used for spam detection where a filter needs to be trained to extract the knowledge that can be used to detect the spam. In this context, Artificial Neural Networks is a widely used machine learning based filter. In this paper, we propose the use of a common type of Feedforward Neural Network called Multi-Layer Perceptron (MLP) for the purpose of e-mail spam identification, where the weights of this network model are found using a new nature-inspired metaheuristic algorithm called Biogeography Based Optimization (BBO). Experiments and results based on two different spam datasets show that the developed MLP model trained by BBO gets high generalization performance compared to other optimization methods used in the literature for e-mail spam detection.展开更多
Autonomous Underwater Vehicles (AUVs) are capable of conducting various underwater missions and marine tasks over long periods of time. In this study, a novel conflict-free motion-planning framework is introduced. T...Autonomous Underwater Vehicles (AUVs) are capable of conducting various underwater missions and marine tasks over long periods of time. In this study, a novel conflict-free motion-planning framework is introduced. This framework enhances AUV mission performance by completing the maximum number of highest priority tasks in a limited time through a large-scale waypoint cluttered operating field and ensuring safe deployment during the mission. The proposed combinatorial route-path-planner model takes advantage of the Biogeography- Based Optimization (BBO) algorithm to satisfy the objectives of both higher- and lower-level motion planners and guarantee the maximization of mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios, including cost constraints in time-varying operating fields. To demonstrate the reliability of the proposed model, the performance of each motion planner is separately assessed and statistical analysis is conducted to evaluate the total performance of the entire model. The simulation results indicate the stability of the proposed model and the feasibility of its application to real-time experiments.展开更多
文摘This paper focuses on wireless-powered communication systems,which are increasingly relevant in the Internet of Things(IoT)due to their ability to extend the operational lifetime of devices with limited energy.The main contribution of the paper is a novel approach to minimize the secrecy outage probability(SOP)in these systems.Minimizing SOP is crucial for maintaining the confidentiality and integrity of data,especially in situations where the transmission of sensitive data is critical.Our proposed method harnesses the power of an improved biogeography-based optimization(IBBO)to effectively train a recurrent neural network(RNN).The proposed IBBO introduces an innovative migration model.The core advantage of IBBO lies in its adeptness at maintaining equilibrium between exploration and exploitation.This is accomplished by integrating tactics such as advancing towards a random habitat,adopting the crossover operator from genetic algorithms(GA),and utilizing the global best(Gbest)operator from particle swarm optimization(PSO)into the IBBO framework.The IBBO demonstrates its efficacy by enabling the RNN to optimize the system parameters,resulting in significant outage probability reduction.Through comprehensive simulations,we showcase the superiority of the IBBO-RNN over existing approaches,highlighting its capability to achieve remarkable gains in SOP minimization.This paper compares nine methods for predicting outage probability in wireless-powered communications.The IBBO-RNN achieved the highest accuracy rate of 98.92%,showing a significant performance improvement.In contrast,the standard RNN recorded lower accuracy rates of 91.27%.The IBBO-RNN maintains lower SOP values across the entire signal-to-noise ratio(SNR)spectrum tested,suggesting that the method is highly effective at optimizing system parameters for improved secrecy even at lower SNRs.
基金supported by Zhejiang Provincial Natural Science Foundation of China (No.Y1090866)supported by Dan Simon and Dawei Du of Cleveland State University, and Jeff Abell of General Motors, whose ideas were instrumental in the development of this research
文摘Biogeography-based optimization (BBO) is a new evolutionary optimization method inspired by biogeography. In this paper, BBO is extended to a multi-objective optimization, and a biogeography-based multi-objective optimization (BBMO) is introduced, which uses the cluster attribute of islands to naturally decompose the problem. The proposed algorithm makes use of nondominated sorting approach to improve the convergence ability efficiently. It also combines the crowding distance to guarantee the diversity of Pareto optimal solutions. We compare the BBMO with two representative state-of-the-art evolutionary multi-objective optimization methods, non-dominated sorting genetic algorithm-II (NSGA-II) and archive-based micro genetic algorithm (AMGA) in terms of three metrics. Simulation results indicate that in most cases, the proposed BBMO is able to find much better spread of solutions and converge faster to true Pareto optimal fronts than NSGA-II and AMGA do.
基金Projects(61463009,11264005,11361014)supported by the National Natural Science Foundation of ChinaProject([2013]2082)supported by the Science Technology Foundation of Guizhou Province,China
文摘A novel hybrid algorithm named ABC-BBO, which integrates artificial bee colony(ABC) algorithm with biogeography-based optimization(BBO) algorithm, is proposed to solve constrained mechanical design problems. ABC-BBO combined the exploration of ABC algorithm with the exploitation of BBO algorithm effectively, and hence it can generate the promising candidate individuals. The proposed hybrid algorithm speeds up the convergence and improves the algorithm's performance. Several benchmark test functions and mechanical design problems are applied to verifying the effects of these improvements and it is demonstrated that the performance of this proposed ABC-BBO is superior to or at least highly competitive with other population-based optimization approaches.
基金Key Science and Technology Program of Henan Province,China(212102310084)J.Sun,X.Li,and C.Tang received the grant.Provincial Key Laboratory for Computer Information Processing Technology,Soochow University(KJS2048),J.Sun received the grant.
文摘Purpose:As to January 11,2021,coronavirus disease(COVID-19)has caused more than 2 million deaths worldwide.Mainly diagnostic methods of COVID-19 are:(i)nucleic acid testing.This method requires high requirements on the sample testing environment.When collecting samples,staff are in a susceptible environment,which increases the risk of infection.(ii)chest computed tomography.The cost of it is high and some radiation in the scan process.(iii)chest X-ray images.It has the advantages of fast imaging,higher spatial recognition than chest computed tomography.Therefore,our team chose the chest X-ray images as the experimental dataset in this paper.Methods:We proposed a novel framework—BEVGG and three methods(BEVGGC-I,BEVGGC-II,and BEVGGC-III)to diagnose COVID-19 via chest X-ray images.Besides,we used biogeography-based optimization to optimize the values of hyperparameters of the convolutional neural network.Results:The experimental results show that the OA of our proposed three methods are 97.65%±0.65%,94.49%±0.22%and 94.81%±0.52%.BEVGGC-I has the best performance of all methods.Conclusions:The OA of BEVGGC-I is 9.59%±1.04%higher than that of state-of-the-art methods.
文摘In recent years,Parkinson’s Disease(PD)as a progressive syndrome of the nervous system has become highly prevalent worldwide.In this study,a novel hybrid technique established by integrating a Multi-layer Perceptron Neural Network(MLP)with the Biogeography-based Optimization(BBO)to classify PD based on a series of biomedical voice measurements.BBO is employed to determine the optimal MLP parameters and boost prediction accuracy.The inputs comprised of 22 biomedical voice measurements.The proposed approach detects two PD statuses:0-disease status and 1-good control status.The performance of proposed methods compared with PSO,GA,ACO and ES method.The outcomes affirm that the MLP-BBO model exhibits higher precision and suitability for PD detection.The proposed diagnosis system as a type of speech algorithm detects early Parkinson’s symptoms,and consequently,it served as a promising new robust tool with excellent PD diagnosis performance.
基金Supported by the National Natural Science Foundation of Chi- na(61075113) the Excellent Young Teacher Foundation of Heilongjiang Province of China (1155G18) the Fundamental Research Funds for the Central Universities (HEUCFZl209)
文摘A constrained multi-objective biogeography-based optimization algorithm (CMBOA) was proposed to solve robot path planning (RPP). For RPP, the length and smoothness of path were taken as the optimization objectives, and the distance from the obstacles was constraint. In CMBOA, a new migration operator with disturbance factor was designed and applied to the feasible population to generate many more non-dominated feasible individuals; meanwhile, some infeasible individuals nearby feasible region were recombined with the nearest feasible ones to approach the feasibility. Compared with classical multi-objective evolutionary algorithms, the current study indicates that CM- BOA has better performance for RPP.
基金National Natural Science Foundations of China(Nos.61503287,71371142,61203250)Program for Young Excellent Talents in Tongji University,China(No.2014KJ046)+1 种基金Program for New Century Excellent Talents in University of Ministry of Education of ChinaPh.D.Programs Foundation of Ministry of Education of China(No.20100072110038)
文摘Biogeography-based optimization(BBO),a natureinspired optimization algorithm(NIOA),has exhibited a huge potential in optimization.In BBO,the good solutions have a large probability to share information with poor solutions,while poor solutions have a large probability to accept the information from others.In original BBO,calculating for migration rates is based on solutions' ranking.From the ranking,it can be known that which solution is better and which one is worse.Based on the ranking,the migration rates are calculated to help BBO select good features and poor features.The differences among results can not be reflected,which will result in an improper migration rate calculating.Two new ways are proposed to calculate migration rates,which is helpful for BBO to obtain a suitable assignment of migration rates and furthermore affect algorithms ' performance.The ranking of solutions is no longer integers,but decimals.By employing the strategies,the ranking can not only reflect the orders of solutions,but also can reflect more details about solutions' distances.A set of benchmarks,which include 14 functions,is employed to compare the proposed approaches with other algorithms.The results demonstrate that the proposed approaches are feasible and effective to enhance BBO's performance.
文摘The COVID-19 pandemic has created a major challenge for countries all over the world and has placed tremendous pressure on their public health care services.An early diagnosis of COVID-19 may reduce the impact of the coronavirus.To achieve this objective,modern computation methods,such as deep learning,may be applied.In this study,a computational model involving deep learning and biogeography-based optimization(BBO)for early detection and management of COVID-19 is introduced.Specifically,BBO is used for the layer selection process in the proposed convolutional neural network(CNN).The computational model accepts images,such as CT scans,X-rays,positron emission tomography,lung ultrasound,and magnetic resonance imaging,as inputs.In the comparative analysis,the proposed deep learning model CNNis compared with other existingmodels,namely,VGG16,InceptionV3,ResNet50,and MobileNet.In the fitness function formation,classification accuracy is considered to enhance the prediction capability of the proposed model.Experimental results demonstrate that the proposed model outperforms InceptionV3 and ResNet50.
文摘PID controllers play an important function in determining tuning para-meters in any process sector to deliver optimal and resilient performance for non-linear,stable and unstable processes.The effectiveness of the presented hybrid metaheuristic algorithms for a class of time-delayed unstable systems is described in this study when applicable to the problems of PID controller and Smith PID controller.The Direct Multi Search(DMS)algorithm is utilised in this research to combine the local search ability of global heuristic algorithms to tune a PID controller for a time-delayed unstable process model.A Metaheuristics Algorithm such as,SA(Simulated Annealing),MBBO(Modified Biogeography Based Opti-mization),BBO(Biogeography Based Optimization),PBIL(Population Based Incremental Learning),ES(Evolution Strategy),StudGA(Stud Genetic Algo-rithms),PSO(Particle Swarm Optimization),StudGA(Stud Genetic Algorithms),ES(Evolution Strategy),PSO(Particle Swarm Optimization)and ACO(Ant Col-ony Optimization)are used to tune the PID controller and Smith predictor design.The effectiveness of the suggested algorithms DMS-SA,DMS-BBO,DMS-MBBO,DMS-PBIL,DMS-StudGA,DMS-ES,DMS-ACO,and DMS-PSO for a class of dead-time structures employing PID controller and Smith predictor design controllers is illustrated using unit step set point response.When compared to other optimizations,the suggested hybrid metaheuristics approach improves the time response analysis when extended to the problem of smith predictor and PID controller designed tuning.
基金funded by King Saud University,Riyadh,Saudi Arabia.Researchers Supporting Proiect Number(RSP2023R167)King Saud University,Riyadh,Saudi Arabia.
文摘The optimization of cognitive radio(CR)system using an enhanced firefly algorithm(EFA)is presented in this work.The Firefly algorithm(FA)is a nature-inspired algorithm based on the unique light-flashing behavior of fireflies.It has already proved its competence in various optimization prob-lems,but it suffers from slow convergence issues.To improve the convergence performance of FA,a new variant named EFA is proposed.The effectiveness of EFA as a good optimizer is demonstrated by optimizing benchmark functions,and simulation results show its superior performance compared to biogeography-based optimization(BBO),bat algorithm,artificial bee colony,and FA.As an application of this algorithm to real-world problems,EFA is also applied to optimize the CR system.CR is a revolutionary technique that uses a dynamic spectrum allocation strategy to solve the spectrum scarcity problem.However,it requires optimization to meet specific performance objectives.The results obtained by EFA in CR system optimization are compared with results in the literature of BBO,simulated annealing,and genetic algorithm.Statistical results further prove that the proposed algorithm is highly efficient and provides superior results.
文摘Spam e-mail has a significant negative impact on individuals and organizations, and is considered as a serious waste of resources, time and efforts. Spam detection is a complex and challenging task to solve. In literature, researchers and practitioners proposed numerous approaches for automatic e-mail spam detection. Learning-based filtering is one of the important approaches used for spam detection where a filter needs to be trained to extract the knowledge that can be used to detect the spam. In this context, Artificial Neural Networks is a widely used machine learning based filter. In this paper, we propose the use of a common type of Feedforward Neural Network called Multi-Layer Perceptron (MLP) for the purpose of e-mail spam identification, where the weights of this network model are found using a new nature-inspired metaheuristic algorithm called Biogeography Based Optimization (BBO). Experiments and results based on two different spam datasets show that the developed MLP model trained by BBO gets high generalization performance compared to other optimization methods used in the literature for e-mail spam detection.
文摘Autonomous Underwater Vehicles (AUVs) are capable of conducting various underwater missions and marine tasks over long periods of time. In this study, a novel conflict-free motion-planning framework is introduced. This framework enhances AUV mission performance by completing the maximum number of highest priority tasks in a limited time through a large-scale waypoint cluttered operating field and ensuring safe deployment during the mission. The proposed combinatorial route-path-planner model takes advantage of the Biogeography- Based Optimization (BBO) algorithm to satisfy the objectives of both higher- and lower-level motion planners and guarantee the maximization of mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios, including cost constraints in time-varying operating fields. To demonstrate the reliability of the proposed model, the performance of each motion planner is separately assessed and statistical analysis is conducted to evaluate the total performance of the entire model. The simulation results indicate the stability of the proposed model and the feasibility of its application to real-time experiments.