Increasing the efficiency of water use by crops continues to escalate as a topic of concem because drought is a restrictive environmental factor for crop productivity woridwide .Greater yield per unit rainfall is one ...Increasing the efficiency of water use by crops continues to escalate as a topic of concem because drought is a restrictive environmental factor for crop productivity woridwide .Greater yield per unit rainfall is one of the most important challenges in water-saving agriculture Besides water-saving by irrigation engineering and conservation tillage, a good understanding of factors limiting and/or regulating yleld now provides us with an opportunity to identify and then precisely seiect for physiciogical and breeding traits that increase the efficiency of water use and drought tolerance under water-limited conditions, biological water-saving is one means of achieving this goal, A definition of bilogical water-saving measures is proposed which embraces improvements in water use efficiency (WUE) and drought tolerance, by genetic improvement and physiological regulation. The preponderance of bilogical water-saving measures is discussed and strategies identified for working within natural resource constraints. The technology and future perspectives of bilogical water saving could provide not only new water-saving techniques but also a scientific base for application of water-saving irrigation and conservation tillage.展开更多
文摘Increasing the efficiency of water use by crops continues to escalate as a topic of concem because drought is a restrictive environmental factor for crop productivity woridwide .Greater yield per unit rainfall is one of the most important challenges in water-saving agriculture Besides water-saving by irrigation engineering and conservation tillage, a good understanding of factors limiting and/or regulating yleld now provides us with an opportunity to identify and then precisely seiect for physiciogical and breeding traits that increase the efficiency of water use and drought tolerance under water-limited conditions, biological water-saving is one means of achieving this goal, A definition of bilogical water-saving measures is proposed which embraces improvements in water use efficiency (WUE) and drought tolerance, by genetic improvement and physiological regulation. The preponderance of bilogical water-saving measures is discussed and strategies identified for working within natural resource constraints. The technology and future perspectives of bilogical water saving could provide not only new water-saving techniques but also a scientific base for application of water-saving irrigation and conservation tillage.