Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after e...Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after emergence above the sand surface may be buried in sand to various depths during its establishment in late spring and early summer. A study was made to examine the effects of sand burial at different levels of 0 (control), 33%, 67%, 100% and 133% of their shoot height, on the survivorship, growth, and biomass allocation pattern of H. laeve seedlings (one and two weeks old after emergence). When burial depth was up to 100% of their shoot height, about 70% seedlings died; and the burial at depth of 133% of their shoot height led to death of all seedlings. When seedlings was buried at depth of 33% and 67% of their shoot height, respectively, after six_week growth, their biomass of whole plant, blade, and root and relative growth rate were higher than the unburied counterparts. The seedlings in both 33% and 67% sand burial treatments did not significantly change their biomass allocation pattern comparing with the unburied ones. Furthermore, the number of leaves and shoot height of the seedlings in both 33% and 67% sand burial treatments were not significantly different from those of unburied individuals, respectively. The newly born leaves of the surviving seedlings, in 33%, 67%, and 100% burial treatments, during the period of experiment, were significantly more than those in control.展开更多
Physiological responses and changes in growth of Indocalamus decorus Q.H.Dai under different ecological conditions are essential for further understanding growth regulation and adaptive mechanisms and establishing an ...Physiological responses and changes in growth of Indocalamus decorus Q.H.Dai under different ecological conditions are essential for further understanding growth regulation and adaptive mechanisms and establishing an evidence-based management system for optimal growth. In this study, the endogenous hormone content in tillering stem bases, germination of lateral buds, and biomass allocation of this bamboo species in different growth environments were investigated. Among the endogenous hormones in the basal stems of tillers, indole-3-pyruvic acid and zeatin riboside were highly correlated with lateral buds that germinated to form shoots, while gibberellic acid was highly correlated with lateral buds that germinated to form rhizomes. The best lateral bud germination characteristics were achieved with full sun, a density of six plantlets per pot, and watering every 6 days. I. decorus plantlets used different resource allocation strategies depending on treatment. Different ecological factors influenced endogenous hormones in the bamboo stem base,which affected lateral bud germination and biomass allocation.展开更多
Environmental variations and ontogeny may affect plant morphological traits and biomass allocation patterns that are related to the adjustments of plant ecological strategies. We selected 2-, 3-and 4-year-old Fritilla...Environmental variations and ontogeny may affect plant morphological traits and biomass allocation patterns that are related to the adjustments of plant ecological strategies. We selected 2-, 3-and 4-year-old Fritillaria unibracteata plants to explore the ontogenetic and altitudinal changes that impact their morphological traits(i.e., plant height, single leaf area,and specific leaf area) and biomass allocations [i.e.,biomass allocations of roots, bulbs, leaves, stems, and flowers] at relatively low altitudinal ranges(3400 m to 3600 m asl) and high altitudinal ranges(3600 m to4000 m asl). Our results indicated that plant height,root biomass allocation, and stem biomass allocation significantly increased during the process of individual growth and development, but single leaf area, specific leaf area, bulb biomass allocation, and leaf biomass allocation showed opposite trends.Furthermore, the impacts of altitudinal changes on morphological traits and biomass allocations had no significant differences at low altitude, except for single leaf area of 2-year-old plants. At high altitude,significantly reduced plant height, single leaf area and leaf biomass allocation for the 2-year-old plants,specific leaf area for the 2-and 4-year-old plants, and stem biomass allocation were found along altitudinal gradients. Significantly increased sexual reproductive allocation and relatively stable single leaf area and leaf biomass allocation were also observed for the 3-and 4-year-old plants. In addition, stable specific leaf area for the 3-year-old plants and root biomass allocation were recorded. These results suggested that the adaptive adjustments of alpine plants, in particular F. unibracteata were simultaneously influenced by altitudinal gradients and ontogeny.展开更多
Subcanopy tree species are an important component of temperate secondary forests.However,their biomass equations are rarely reported,which forms a“vertical gap”between canopy tree species and understory shrub specie...Subcanopy tree species are an important component of temperate secondary forests.However,their biomass equations are rarely reported,which forms a“vertical gap”between canopy tree species and understory shrub species.In this study,we destructively sampled six common subcanopy species(Syringa reticulate var.amurensis(Rupr.)Pringle,Padus racemosa(Lam.)Gilib.,Acer ginnala Maxim.,Malus baccata(Linn.)Borkh.,Rhamnus davurica Pall.,and Maackia amurensis Rupr.et Maxim.)to establish biomass equations in a temperate forest of Northeast China.The mixed-species and species-specifi c biomass allometric equations were well fi tted against diameter at breast height(DBH).Adding tree height(H)as the second predictor increased the R^(2)of the models compared with the DBH-only models by–1%to+3%.The R^(2)of DBH-only and DBH-H equations for the total biomass of mixed-species were 0.985 and 0.986,respectively.On average,the biomass allocation proportions for the six species were in the order of stem(45.5%)>branch(30.1%)>belowground(19.5%)>foliage(4.9%),with a mean root:shoot ratio of 0.24.Biomass allocation to each specifi c component diff ered among species,which aff ected the performance of the mixed-species model for particular biomass component.When estimating the biomass of subcanopy species using the equations for canopy species(e.g.,Betula platyphylla Suk.,Ulmus davidiana var.japonica(Rehd.)Nakai,and Acer mono Maxim.),the errors in individual biomass estimation increased with tree size(up to 68.8%at 30 cm DBH),and the errors in stand biomass estimation(up to 19.2%)increased with increasing percentage of basal area shared by subcanopy species.The errors caused by selecting such inappropriate models could be removed by multiplying adjustment factors,which were usually power functions of DBH for biomass components.These results provide methodological support for accurate biomass estimation in temperate China and useful guidelines for biomass estimation for subcanopy species in other regions,which can help to improve estimates of forest biomass and carbon stocks.展开更多
Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and p...Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.展开更多
Plant competition has been recognized as one of the most important factors influencing the soructure and function of lake ecosystems. Competition from plants of dissimilar growth form may have profound effects on shal...Plant competition has been recognized as one of the most important factors influencing the soructure and function of lake ecosystems. Competition from plants of dissimilar growth form may have profound effects on shallow lakes'. An experiment was conducted to investigate the effects of competitive interactions of submersed plants with dis- similar growth forms on the biomass allocations. Hydrilla verticitlata and Vallisneria natans were selected and were planted in a single-species monoculture and a mixed-species pattern, Results showed that the growth of E natans was' significantly affected by the tt, verticillata and caused a sharp reduction of biomass, but the root:shoot ratio of E ha- tans was not affected significantly and there was a minimal increase in mixture: while for H. verticillata, the biomass and the root:shoot ratio were not significantly changed by the competitive interactions ore natans, there was minimal increase of biomass and minimal decrease of the root:shoot ratio. These results may indicate that theplant which can develop a dense mat or canopy at the water surface would be a stronger competitor relative to the plant that depends more on light availability near the sediment.展开更多
Biomass of seedlings at different developing stages of growth is important information for studying the response of species to site conditions.The objectives of this study was to explore the distribution characteristi...Biomass of seedlings at different developing stages of growth is important information for studying the response of species to site conditions.The objectives of this study was to explore the distribution characteristics of AGB(above-ground biomass)and BGB(below-ground biomass)of Abies georgei var.smithii seedlings of different ages,and investigate the effects of topography(slope aspect,altitude),plant community characteristics(crown density,species diversity,etc.),and soil properties(soil physical and chemical properties)on the biomass and its allocation.Seedlings in five age classes(1–2,3–4,5–6,7–8,and 9–10 years old)were collected by full excavation from 6 elevations(3800 m,3900 m,4000 m,4100 m,4200 m,4300 m)on the north and south slopes of Sejila Mountain in Tibet.15seedlings of each age class were investigated at one altitude.The individual effects of seedling age(SA)and the interaction effects of SA,slope aspect(SL),and elevation(EG),namely,SL×EG,SL×SA,EG×SA,and SL×EG×SA,had significant effects on the AGB of the seedlings(p<0.05),whereas BGB was only significantly affected by SA(p<0.001).The AGB and BGB of the seedlings showed a binomial growth trend with the increase in seedling age,and had an allometric relationship at different elevations,α(allometric exponential)varied from 0.913 to 1.046 in the northern slope,and from 1.004 to 1.268 in the southern slope.The biomass of seedlings on the northern slope was remarkably affected by stand factors,with a contribution rate of 47.8%,whereas that on the southern slope was considerably affected by soil factors with a contribution rate of 53.2%.The results showed that age was the most important factor affecting seedling biomass.The allometric pattern of seedling biomass was relatively stable,but in a highaltitude habitat,A.georgei var.smithii seedlings increased the input of BGB.Understanding seedling biomass allocation and its influencing factors is useful for evaluating plants’ability to acquire resources and survival strategies for adaptation to the environment in Tibet Plateau.展开更多
Biomass allocation and assimilation efficiency of natural Amour linden (Tilia amurensis) samplings in different light regimes were analyzed in the paper. The results showed that shoot increment of samplings in gap was...Biomass allocation and assimilation efficiency of natural Amour linden (Tilia amurensis) samplings in different light regimes were analyzed in the paper. The results showed that shoot increment of samplings in gap was the highest and that of samplings under canopy was the least. Samplings in gap expressed apical dominance strongly but samplings in full sun and under canopy behaved intensive branching. Lateral competition or moderate shading was favored to bole construction. The patters of biomass allocation of samplings in different light environment were rather similar. The biomass translocated to stem was more than that to other organs, and about one half of photosynthate was used to support leaf turn over. On the contrary, photosynthates of samplings in full sun were mostly consumed in leaves bearing and energy balancing. The carbon assimilation for leaves of samplings in gap was the most efficient, and more carbons were fixed and translocated to non-photosynthetic organs, especially to stemwood.展开更多
Understanding of biomass and water allocation in plant populations will provide useful information on their growth pattern and resource allocation dynamics. By direct measurement, the biomass and water content partiti...Understanding of biomass and water allocation in plant populations will provide useful information on their growth pattern and resource allocation dynamics. By direct measurement, the biomass and water content partitioning were compared at the aboveground, belowground and whole-plant levels for artificial Caragana korshinskii populations between 6- and 25-year-old sites in desert steppe, northern China. The biomass was mainly allocated to third-srade branches at the aboveground level, and to firstand second-grade roots at the belowground level, and to aboveground parts at the whole-plant vegetative level. Those plant parts mentioned above became the major component of biomass pool of these shrub populations. Biomass pattern changed significantly at aboveground and/or whole-plant levels (P 〈0.05), but not at belowground level (P 〉0.05) at 25-year-old site in comparison to 6-year-old site. Also, the water relations between dif- ferent plant parts changed considerably at all three levels from 6- to 25-year-old sites. These results imply that biomass pattern and relative water content of plant parts are correlated with the process of plantation development. The ratio of belowground to aboveground, though below 1, increased from 6- to 25-year-old site. These results suggest that these shrub populations can adjust biomass partition and relative water content of different compartments to alter their ecological adaptive strategies during stand development in desertified regions.展开更多
Investigation of the above-ground biomass allocation patterns on Scots pine plantations is critical for quantifying the productivity and carbon cycle of forest ecosystems. We estimated above-ground biomass and net pri...Investigation of the above-ground biomass allocation patterns on Scots pine plantations is critical for quantifying the productivity and carbon cycle of forest ecosystems. We estimated above-ground biomass and net primary production of a 25-year-old Pinus sylvestris L. (Scots pine) plantation, in a semi-arid region of Mongolia. The above-ground biomass of sample trees was divided into stem wood, stem bark, live branches, dead branches and needles. Total biomass for the stand was only 18.03 Mg ha1, of which 47.6% was found in stem wood, 25.8% in live branches and 14.8% in needles. The growth rate of the Scots pine plantation in the study region was relatively low compared with other regions. In the study area, it was observed that the rate of biomass accumulation in the plantation was very slow; this can be explained by very limited growing conditions and intensive crown closure. The results from this study indicate that it may be necessary to carry out thinning to increase biomass production by reducing competition between trees in the Scotch pine plantation.展开更多
We assessed the potential of white poplar(Populus alba L.) and its inter-sectional hybridization with euphrates poplar(P. euphratica Oliv.) for carbon storage and sequestration in central Iran. Trials were establi...We assessed the potential of white poplar(Populus alba L.) and its inter-sectional hybridization with euphrates poplar(P. euphratica Oliv.) for carbon storage and sequestration in central Iran. Trials were established at planting density of 2,500 trees per hectare in block randomized design with three replicates. After 6 years, we measured the above-ground biomass of tree components(trunk, branch, bark, twig and leaf), and assessed soil carbon at three depths. P. alba 9 euphratica plantation stored significantly more carbon(22.3 t ha-1) than P. alba(16.7 t ha-1) and P. euphratica 9 alba(13.1 t ha-1).Most of the carbon was accumulated in the above-ground biomass(61.1 % in P. alba, 72.4 % in P. alba 9 euphratica and 56.0 % in P. euphratica 9 alba). There was no significant difference in soil carbon storage. Also, biomass allocation was different between white poplar P. alba and its inter-sectional hybridization. Therefore, there was a yield difference due to genomic imprinting, which increased the possibility that paternally and maternally inherited wood production alleles would be differentially expressed in the new crossing.展开更多
Understanding understory seedling regeneration mechanisms is important for the sustainable development of temperate primary forests in the context of increasingly intense climate warming events.The poor regeneration o...Understanding understory seedling regeneration mechanisms is important for the sustainable development of temperate primary forests in the context of increasingly intense climate warming events.The poor regeneration of dominant tree species,however,is one of the biggest challenges it faces at the moment.Especially,the regeneration of the shade-intolerant Quercus mongolica seedling is difficult in primary forests,which contrasts with the extreme abundance of understory seedlings in secondary forests.The mechanism behind the interesting phenomenon is still unknown.This study used in-situ monitoring and nursery-controlled experiment to investigate the survival rate,growth performance,as well as nonstructural carbohydrate (NSC) concentrations and pools of various organ tissues of seedlings for two consecutive years,further analyze the understory light availability and simulate the foliage carbon (C) gain in the secondary and primary forest.Results suggested that seedlings in the secondary forest had greater biomass allocation aboveground,height and specific leaf area (SLA) in summer,which allowed the seedling to survive longer in the canopy closure period.High light availability and positive C gain in early spring and late autumn are key factors affecting the growth and survival of understory seedlings in the secondary forest,whereas seedlings in the primary forest had annual negative carbon gain.Through the growing season,the total NSC concentrations of seedlings gradually decreased,whereas those of seedlings in the secondary forest increased significantly in autumn,and were mainly stored in roots for winter consumption and the following year's summer shade period,which was verified by the nursery-controlled experiment that simulated autumn enhanced light availability improved seedling survival rate and NSC pools.In conclusion,our results revealed the survival trade-off strategies of Quercus mongolica seedlings and highlighted the necessity of high light availability during the spring and autumn phenological periods for shade-intolerant tree seedling recruitment.展开更多
One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moistu...One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moisture contents (75.0%, 61.1%, 46.4% and 35.4%). The results showed that net photosynthesis rate (NPR), transpiration rate (TR) and stomatal conductance (Sc) of seedlings of the three species decreased with the decease of soil moisture content, and Amur maple seedlings had the greatest change in those physiological indices, followed by Ussurian pear, David peach. Amur maple and Ussurian pear seedlings also presented a decrease tendency in water use efficiency (WUE) under lower soil moisture content, whereas this was reversed for David peach. Under water stress the biomass allocation to seedling root had a significant increase for all the experimental species. As to root/shoot ratio, Amur maple seedlings had the biggest increase, while David peach had the smallest increase. The leaf plasticity of Amur maple seedlings was greater, the leaf size and total leaf area decreased significantly as the stress was intensified. No significant change of leaf size and total leaf area was found in seedlings of Ussurian pear and David peach. It was concluded that Amur maple was more tolerant to soil moisture stress in comparison with David peach and Ussurian pear.展开更多
Numerous studies have focused on vegetation traits and soil properties in grassland, few of which concerned about effects of human utilization patterns on grassland yet. Thus, this study hypothesized that human distur...Numerous studies have focused on vegetation traits and soil properties in grassland, few of which concerned about effects of human utilization patterns on grassland yet. Thus, this study hypothesized that human disturbance(e.g., grazing, mowing and fencing) triggered significant variation of biomass partitioning and carbon reallocation. Besides, there existed some differences of species diversity and soil fertility. To address these hypotheses of grassland with diverse utilization patterns in Hulun Buir City, Inner Mongolia, China, we sampled in situ about aboveground biomass(AGB) and belowground biomass(BGB) to evaluate their biomass allocation. Species diversity and soil properties were also investigated. Subsequently, we discussed the relationship of species diversity with environmental conditions, using data collected from 23 sites during the ecological project period of Returning Grazing Lands to Grasslands(RGLG) program. The results were as follows: 1) both AGB and BGB were lower on grazing regime than those on fencing and mowing, but the ratio of root-to-shoot(R/S) was higher on grazing regime than the other two utilization patterns; 2) neither of evenness and Simpson Index was different significantly among all grassland utilization patterns in desert, typical, and meadow grassland at 0.05. In meadow grassland, species richness of fencing pattern was significantly higher than that of grazing pattern(p < 0.05); 3) both of soil organic carbon content and soil available phosphorous content were increased significantly on fencing pattern than grazing pattern(p < 0.05) in desert grassland, and mowing patterns increased the soil nutrients(soil organic carbon, soil total phosphorous, soil available phosphorous, and soil total nitrogen) significantly compared with grazing patterns(p < 0.05) in typical grassland. However, there were no significant differences among utilization patterns in meadow grassland. In conclusion, both of AGB and BGB were increased significantly by fencing. Moreover, species diversity and soil nutrients can be promoted via mowing and fencing. This study suggested that implementation of Ecological Project played a positive role in sustainable grassland utilization of Hulun Buir City and a strong positive influence on the entire temperate grassland.展开更多
Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore ph...Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore photosynthetic performance, water status and growth response of desert annual herbage. Bassia dasyphylla seedlings were grown in contrasting dew treatments (dew-absent and dew-present) and different watering regimes (normal and deficient). The effects of dew on the water status and photosynthetic performance of Bassia dasyphylla grown in a desert area of the Hexi Corridor in Northwestern China, were evaluated. The results indicated the pres- ence of dew significantly increased relative water content (RWC) of shoots and total biomass of plants in both water regimes, and enhanced the diurnal shoot water potential and stomatal conductance in the early morning, as well as photosynthetic rate, which reached its maximum only in the water-stressed regime. The presence of dew increased aboveground growth of plants and photosynthate accumulation in leaves, but decreased the root-to-shoot ratio in both water regimes. Dew may have an important role in improving plant water status and ameliorating the adverse effects of plants exposed to prolonged drought.展开更多
Determining the mechanisms underlying the spatial distribution of plant species is one of the central themes in biogeography and ecology. However, we are still far from gaining a full understanding of the autecologica...Determining the mechanisms underlying the spatial distribution of plant species is one of the central themes in biogeography and ecology. However, we are still far from gaining a full understanding of the autecological processes needed to unravel species distribution patterns. In the current study, by comparing seedling recruitment, seedling morphological performance and biomass allocation of two Haloxylon species, we try to identify the causes of the dune/interdune distribution pattern of these two species. Our results show the soil on the dune had less nutrients but was less saline than that of the interdune; with prolonged summer drought, soil water availability was lower on the dune than on the interdune. Both species had higher densities of seedlings at every stage of recruitment in their native habitat than the adjacent habitat. The contrasting different adaptation to nutrients, salinity and soil water conditions in the seedling recruitment stage strongly determined the distribution patterns of the two species on the dune/interdune. Haloxylon persicum on the dunes had lower total dry biomass, shoot and root dry biomass, but allocated a higher percentage of its biomass to roots and possessed a higher specific root length and specific root area by phenotypic traits specialization than that of Haloxylon ammodendron on the interdune. All of these allowed H. persicum to be more adapted to water stress and nutrient shortage. The differences in morphology and allocation facilitated the ability of these two species to persist in their own environments.展开更多
Optimal partitioning theory (OPT) suggests that plants should allocate relatively more biomass to the organs that acquire the most limited resources. The assumption of this theory is that plants trade off the biomas...Optimal partitioning theory (OPT) suggests that plants should allocate relatively more biomass to the organs that acquire the most limited resources. The assumption of this theory is that plants trade off the biomass allocation between leaves, stems and roots. However, variations in biomass allocation among plant parts can also occur as a plant grows in size. As an alternative approach, allometric biomass partitioning theory (APT) asserts that plants should trade off their biomass between roots, stems and leaves. This approach can minimize bias when comparing biomass allocation patterns by accounting for plant size in the analysis. We analyzed the biomass allo- cation strategy of perennial Pennisetum centrasiaticum Tzvel in the Horqin Sand Land of northern China by treating samples with different availabilities of soil nutrients and water, adding snow in winter and water in summer. We hypothesized that P. centrasiaticum alters its pattern of biomass allocation strategy in response to different levels of soil water content and soil nitrogen content. We used standardized major axis (SMA) to analyze the allometric rela- tionship (slope) and intercept between biomass traits (root, stem, leaf and total biomass) of nitrogen/water treat- ments. Taking plant size into consideration, no allometric relationships between different organs were significantly affected by differing soil water and soil nitrogen levels, while the biomass allocation strategy of P. centrasiaticum was affected by soil water levels, but not by soil nitrogen levels. The plasticity of roots, leaves and root/shoot ratios was 'true' in response to fluctuations in soil water content, but the plasticity of stems was consistent for trade-offs between the effects of water and plant size. Plants allocated relatively more biomass to roots and less to leaves when snow was added in winter. A similar trend was observed when water was added in summer. The plasticity of roots, stems and leaves was a function of plant size, and remained unchanged in response to different soil nitrogen levels.展开更多
The biomass and ratio of root-shoot of Pinus sylvestfthermis seedlings at Co, concentration of 700 μL L-1 and 50 μL-1L-1 were measured using open-top chambers (OTCs) in Changbai Mountain during Jun. to oct. in 1999....The biomass and ratio of root-shoot of Pinus sylvestfthermis seedlings at Co, concentration of 700 μL L-1 and 50 μL-1L-1 were measured using open-top chambers (OTCs) in Changbai Mountain during Jun. to oct. in 1999. The results showed that doubling CO2 concentration was benefit tb seedling growth of the species (500 μL- L1 was better than 700 μLL’ L-1 ) and the biomass production was increased in both aboveground and underground parts of seedlings. Carbon trans formation to roots was evident as rising of CO2 concentration.展开更多
Extensive shrimp ponds are located next to the landward edges of most of mangrove forests in China. A shrimp pond may influence mangroves by(1) routine effluent between pond and tide, and(2) dredging effluent from...Extensive shrimp ponds are located next to the landward edges of most of mangrove forests in China. A shrimp pond may influence mangroves by(1) routine effluent between pond and tide, and(2) dredging effluent from pond-dredging at least once a year. Our study consisted of two experiments to study the effects of these two effluents on the seedling growth of Kandelia obovata. One experiment simulated the effects of routine effluents.The other simulated four sedimentation thicknesses(0 cm, 2 cm, 4 cm, 8 cm) over mangrove soils by dredging effluent from pond-dredging, and revealed the cumulative effects of dredging effluents on K. obovata. At each of the three fixed salinities, i.e., 5, 15 and 25, routine effluent did not result in significant differences in each of the measured growth parameters of K. obovata seedlings. However, effects of dredging effluent on seedling growth of K. obovata were related with sedimentation thickness. Most growth parameters showed maximum values at sedimentation thickness 4 cm. The data indicated that K. obovata accelerated its growth under moderate sedimentation thicknesses and it was tolerant and adaptable to shrimp pond-cleaning effluent sediments up to about 8 cm in our experiment.展开更多
Clarifying the persistence time of seedlings of dominant species under continual drought will help us understand responses of ecosystems to global climate change and improve revegetation efforts. Drought tolerance of ...Clarifying the persistence time of seedlings of dominant species under continual drought will help us understand responses of ecosystems to global climate change and improve revegetation efforts. Drought tolerance of four dominant psammophytic shrub species occurring in different environments was studied in the semi-arid areas of Inner Mongolian grasslands. Seedlings of Hedysarum laeve, Caragana korshinskii, Artemisia sphaerocephala and Artemisia ordosica were grown under four air temperature regimes (night/day: 12.5/22.5℃, 15/25℃, 17.5/27.5℃ and 20/30℃) within climate (air temperature and humidity) controlled, naturally lit glasshouses with a night/day relative humidity of 70%/50%. Pots were watered to field capacity for each temperature treatment. Soil water condition was monitored by weighting each pot every day using an electronic balance. Date of seedling death for each treatment was recorded and the dead plants were harvested. Plant dry weights were determined after oven drying at 80℃ for 3 days. Two Artemisia species had higher growth rates than H. laeve and C. korshinskii, and the growth of all four species increased with increasing temperatures. The two Artemisia species had the highest leaf biomass increment, followed by C. korshinskii, and then H. laeve. Shoot biomass increment was higher for A. ordosica and C. korshinskii, intermediate for A. sphaerocephala and lowest for H. laeve. C. korshinskii had the highest root biomass increment. The final soil water content at death for all four species varied from 1% to 2%. C. korshinskii, A. sphaerocephala, H. laeve and A. ordosica survived for 25-43, 24-41, 26-41 and 24-37 days without watering, respectively. C. korshinskii, A. sphaerocephala, H. Laeve, and A. ordosica seedlings survived longer at the lowest temperatures (12.5/22.5℃) than at the highest temperatures (20/30℃) by 18, 17, 15 and 13 days, respectively. Increased climatic temperatures induce the death of seedlings in years with long intervals between rainfall events. The adaptation of seedlings to droughts should be emphasized in revegetation efforts in the Ordos Plateau, Inner Mongolia.展开更多
文摘Hedysarum laeve Maxim. (Leguminosae) is one of the major species used frequently in revegetation of dune_field in the sandlands of the northern part of China by means of aerial sowing. Seedlings of the species after emergence above the sand surface may be buried in sand to various depths during its establishment in late spring and early summer. A study was made to examine the effects of sand burial at different levels of 0 (control), 33%, 67%, 100% and 133% of their shoot height, on the survivorship, growth, and biomass allocation pattern of H. laeve seedlings (one and two weeks old after emergence). When burial depth was up to 100% of their shoot height, about 70% seedlings died; and the burial at depth of 133% of their shoot height led to death of all seedlings. When seedlings was buried at depth of 33% and 67% of their shoot height, respectively, after six_week growth, their biomass of whole plant, blade, and root and relative growth rate were higher than the unburied counterparts. The seedlings in both 33% and 67% sand burial treatments did not significantly change their biomass allocation pattern comparing with the unburied ones. Furthermore, the number of leaves and shoot height of the seedlings in both 33% and 67% sand burial treatments were not significantly different from those of unburied individuals, respectively. The newly born leaves of the surviving seedlings, in 33%, 67%, and 100% burial treatments, during the period of experiment, were significantly more than those in control.
基金financially supported by the Fundamental Research Funds for the Central Nonprofit Research Institution of CAF(CAFYBB2014QA038)Natural Science Foundation of Zhejiang Province(LY14C030008)Science and Technology Planning Project of Zhejiang Province(2014F10047)
文摘Physiological responses and changes in growth of Indocalamus decorus Q.H.Dai under different ecological conditions are essential for further understanding growth regulation and adaptive mechanisms and establishing an evidence-based management system for optimal growth. In this study, the endogenous hormone content in tillering stem bases, germination of lateral buds, and biomass allocation of this bamboo species in different growth environments were investigated. Among the endogenous hormones in the basal stems of tillers, indole-3-pyruvic acid and zeatin riboside were highly correlated with lateral buds that germinated to form shoots, while gibberellic acid was highly correlated with lateral buds that germinated to form rhizomes. The best lateral bud germination characteristics were achieved with full sun, a density of six plantlets per pot, and watering every 6 days. I. decorus plantlets used different resource allocation strategies depending on treatment. Different ecological factors influenced endogenous hormones in the bamboo stem base,which affected lateral bud germination and biomass allocation.
基金funded by the Natural Science Foundation Project of Sichuan Science and Technology Department (2018JY0305)Key Projects of the Natural Science Foundation of Sichuan Education Department (18ZA0002)
文摘Environmental variations and ontogeny may affect plant morphological traits and biomass allocation patterns that are related to the adjustments of plant ecological strategies. We selected 2-, 3-and 4-year-old Fritillaria unibracteata plants to explore the ontogenetic and altitudinal changes that impact their morphological traits(i.e., plant height, single leaf area,and specific leaf area) and biomass allocations [i.e.,biomass allocations of roots, bulbs, leaves, stems, and flowers] at relatively low altitudinal ranges(3400 m to 3600 m asl) and high altitudinal ranges(3600 m to4000 m asl). Our results indicated that plant height,root biomass allocation, and stem biomass allocation significantly increased during the process of individual growth and development, but single leaf area, specific leaf area, bulb biomass allocation, and leaf biomass allocation showed opposite trends.Furthermore, the impacts of altitudinal changes on morphological traits and biomass allocations had no significant differences at low altitude, except for single leaf area of 2-year-old plants. At high altitude,significantly reduced plant height, single leaf area and leaf biomass allocation for the 2-year-old plants,specific leaf area for the 2-and 4-year-old plants, and stem biomass allocation were found along altitudinal gradients. Significantly increased sexual reproductive allocation and relatively stable single leaf area and leaf biomass allocation were also observed for the 3-and 4-year-old plants. In addition, stable specific leaf area for the 3-year-old plants and root biomass allocation were recorded. These results suggested that the adaptive adjustments of alpine plants, in particular F. unibracteata were simultaneously influenced by altitudinal gradients and ontogeny.
基金supported by the National Key Research and Development Program(2021YFD220040105)National Natural Science Foundation of China(32171765).
文摘Subcanopy tree species are an important component of temperate secondary forests.However,their biomass equations are rarely reported,which forms a“vertical gap”between canopy tree species and understory shrub species.In this study,we destructively sampled six common subcanopy species(Syringa reticulate var.amurensis(Rupr.)Pringle,Padus racemosa(Lam.)Gilib.,Acer ginnala Maxim.,Malus baccata(Linn.)Borkh.,Rhamnus davurica Pall.,and Maackia amurensis Rupr.et Maxim.)to establish biomass equations in a temperate forest of Northeast China.The mixed-species and species-specifi c biomass allometric equations were well fi tted against diameter at breast height(DBH).Adding tree height(H)as the second predictor increased the R^(2)of the models compared with the DBH-only models by–1%to+3%.The R^(2)of DBH-only and DBH-H equations for the total biomass of mixed-species were 0.985 and 0.986,respectively.On average,the biomass allocation proportions for the six species were in the order of stem(45.5%)>branch(30.1%)>belowground(19.5%)>foliage(4.9%),with a mean root:shoot ratio of 0.24.Biomass allocation to each specifi c component diff ered among species,which aff ected the performance of the mixed-species model for particular biomass component.When estimating the biomass of subcanopy species using the equations for canopy species(e.g.,Betula platyphylla Suk.,Ulmus davidiana var.japonica(Rehd.)Nakai,and Acer mono Maxim.),the errors in individual biomass estimation increased with tree size(up to 68.8%at 30 cm DBH),and the errors in stand biomass estimation(up to 19.2%)increased with increasing percentage of basal area shared by subcanopy species.The errors caused by selecting such inappropriate models could be removed by multiplying adjustment factors,which were usually power functions of DBH for biomass components.These results provide methodological support for accurate biomass estimation in temperate China and useful guidelines for biomass estimation for subcanopy species in other regions,which can help to improve estimates of forest biomass and carbon stocks.
基金supported by the Western Action Plan Project of the Chinese Academy of Sciences(Grant No.KZCX2-XB3-08)the Strategic Pilot Science and Technology Projects of the Chinese Academy of Sciences(Grant No.XDB03030505)the National Key Technology Research and Design Program of China(Grant No.2010BAE00739-03)
文摘Precipitation is a potential factor that significantly affects plant nutrient pools by influencing biomass sizes and nutrient concentrations. However, few studies have explicitly dissected carbon(C), nitrogen(N) and phosphorus(P) pools between above- and belowground biomass at the community level along a precipitation gradient. We conducted a transect(approx. 1300 km long) study of Stipa purpurea community in alpine steppe on the Tibet Plateau of China to test the variation of N pool of aboveground biomass/N pool of belowground biomass(AB/BB N) and P pool of aboveground biomass/P pool of belowground biomass(AB/BB P) along a precipitation gradient. The proportion of aboveground biomass decreased significantly from mesic to drier sites. Along the belt transect, the plant N concentration was relatively stable; thus, AB/BB N increased with moisture due to the major influences by above- and belowground biomass allocation. However, P concentration of aboveground biomass decreased significantly with increasing precipitation and AB/BB P did not vary with aridity because of the offset effect of the P concentration and biomass allocation. Precipitation gradients do decouple the N and P pool of a S. purpurea community along a precipitation gradient in alpine steppe. The decreasing of N:P in aboveground biomass in drier regions may indicate much stronger N limitation in more arid area.
基金sponsored by China Postdoctoral Science Foundation (Grant No.20090461149)the Postdoctoral Science Foundation of Jiangsu Province (Grant No. 0802029C)the Youth Science Foundation of JINAN Univeristy (Grant No. 51208026)
文摘Plant competition has been recognized as one of the most important factors influencing the soructure and function of lake ecosystems. Competition from plants of dissimilar growth form may have profound effects on shallow lakes'. An experiment was conducted to investigate the effects of competitive interactions of submersed plants with dis- similar growth forms on the biomass allocations. Hydrilla verticitlata and Vallisneria natans were selected and were planted in a single-species monoculture and a mixed-species pattern, Results showed that the growth of E natans was' significantly affected by the tt, verticillata and caused a sharp reduction of biomass, but the root:shoot ratio of E ha- tans was not affected significantly and there was a minimal increase in mixture: while for H. verticillata, the biomass and the root:shoot ratio were not significantly changed by the competitive interactions ore natans, there was minimal increase of biomass and minimal decrease of the root:shoot ratio. These results may indicate that theplant which can develop a dense mat or canopy at the water surface would be a stronger competitor relative to the plant that depends more on light availability near the sediment.
基金supported by the National Natural Science Foundation of China(Grant No.31960256)Graduate Innovation Program of Key Laboratory of Forest Ecology in Tibet Plateau,Ministry of Education(XZA-JYBSYS-2021-Y13)+1 种基金the Central Government Guides Local Science and Technology Development Projects,China(XZ202101YD0016C)the Independent Research Project of Science and Technology Innovation Base in Tibet Autonomous Region(XZ2022JR0007G)。
文摘Biomass of seedlings at different developing stages of growth is important information for studying the response of species to site conditions.The objectives of this study was to explore the distribution characteristics of AGB(above-ground biomass)and BGB(below-ground biomass)of Abies georgei var.smithii seedlings of different ages,and investigate the effects of topography(slope aspect,altitude),plant community characteristics(crown density,species diversity,etc.),and soil properties(soil physical and chemical properties)on the biomass and its allocation.Seedlings in five age classes(1–2,3–4,5–6,7–8,and 9–10 years old)were collected by full excavation from 6 elevations(3800 m,3900 m,4000 m,4100 m,4200 m,4300 m)on the north and south slopes of Sejila Mountain in Tibet.15seedlings of each age class were investigated at one altitude.The individual effects of seedling age(SA)and the interaction effects of SA,slope aspect(SL),and elevation(EG),namely,SL×EG,SL×SA,EG×SA,and SL×EG×SA,had significant effects on the AGB of the seedlings(p<0.05),whereas BGB was only significantly affected by SA(p<0.001).The AGB and BGB of the seedlings showed a binomial growth trend with the increase in seedling age,and had an allometric relationship at different elevations,α(allometric exponential)varied from 0.913 to 1.046 in the northern slope,and from 1.004 to 1.268 in the southern slope.The biomass of seedlings on the northern slope was remarkably affected by stand factors,with a contribution rate of 47.8%,whereas that on the southern slope was considerably affected by soil factors with a contribution rate of 53.2%.The results showed that age was the most important factor affecting seedling biomass.The allometric pattern of seedling biomass was relatively stable,but in a highaltitude habitat,A.georgei var.smithii seedlings increased the input of BGB.Understanding seedling biomass allocation and its influencing factors is useful for evaluating plants’ability to acquire resources and survival strategies for adaptation to the environment in Tibet Plateau.
文摘Biomass allocation and assimilation efficiency of natural Amour linden (Tilia amurensis) samplings in different light regimes were analyzed in the paper. The results showed that shoot increment of samplings in gap was the highest and that of samplings under canopy was the least. Samplings in gap expressed apical dominance strongly but samplings in full sun and under canopy behaved intensive branching. Lateral competition or moderate shading was favored to bole construction. The patters of biomass allocation of samplings in different light environment were rather similar. The biomass translocated to stem was more than that to other organs, and about one half of photosynthate was used to support leaf turn over. On the contrary, photosynthates of samplings in full sun were mostly consumed in leaves bearing and energy balancing. The carbon assimilation for leaves of samplings in gap was the most efficient, and more carbons were fixed and translocated to non-photosynthetic organs, especially to stemwood.
基金supported by the National Natural Science Foundation of China(No.41101050)the National Science and Technology Support Program(2010BAC07B03) of Chinathe Projects of the National Basic Research Program of China(No.2009CB421303)
文摘Understanding of biomass and water allocation in plant populations will provide useful information on their growth pattern and resource allocation dynamics. By direct measurement, the biomass and water content partitioning were compared at the aboveground, belowground and whole-plant levels for artificial Caragana korshinskii populations between 6- and 25-year-old sites in desert steppe, northern China. The biomass was mainly allocated to third-srade branches at the aboveground level, and to firstand second-grade roots at the belowground level, and to aboveground parts at the whole-plant vegetative level. Those plant parts mentioned above became the major component of biomass pool of these shrub populations. Biomass pattern changed significantly at aboveground and/or whole-plant levels (P 〈0.05), but not at belowground level (P 〉0.05) at 25-year-old site in comparison to 6-year-old site. Also, the water relations between dif- ferent plant parts changed considerably at all three levels from 6- to 25-year-old sites. These results imply that biomass pattern and relative water content of plant parts are correlated with the process of plantation development. The ratio of belowground to aboveground, though below 1, increased from 6- to 25-year-old site. These results suggest that these shrub populations can adjust biomass partition and relative water content of different compartments to alter their ecological adaptive strategies during stand development in desertified regions.
文摘Investigation of the above-ground biomass allocation patterns on Scots pine plantations is critical for quantifying the productivity and carbon cycle of forest ecosystems. We estimated above-ground biomass and net primary production of a 25-year-old Pinus sylvestris L. (Scots pine) plantation, in a semi-arid region of Mongolia. The above-ground biomass of sample trees was divided into stem wood, stem bark, live branches, dead branches and needles. Total biomass for the stand was only 18.03 Mg ha1, of which 47.6% was found in stem wood, 25.8% in live branches and 14.8% in needles. The growth rate of the Scots pine plantation in the study region was relatively low compared with other regions. In the study area, it was observed that the rate of biomass accumulation in the plantation was very slow; this can be explained by very limited growing conditions and intensive crown closure. The results from this study indicate that it may be necessary to carry out thinning to increase biomass production by reducing competition between trees in the Scotch pine plantation.
文摘We assessed the potential of white poplar(Populus alba L.) and its inter-sectional hybridization with euphrates poplar(P. euphratica Oliv.) for carbon storage and sequestration in central Iran. Trials were established at planting density of 2,500 trees per hectare in block randomized design with three replicates. After 6 years, we measured the above-ground biomass of tree components(trunk, branch, bark, twig and leaf), and assessed soil carbon at three depths. P. alba 9 euphratica plantation stored significantly more carbon(22.3 t ha-1) than P. alba(16.7 t ha-1) and P. euphratica 9 alba(13.1 t ha-1).Most of the carbon was accumulated in the above-ground biomass(61.1 % in P. alba, 72.4 % in P. alba 9 euphratica and 56.0 % in P. euphratica 9 alba). There was no significant difference in soil carbon storage. Also, biomass allocation was different between white poplar P. alba and its inter-sectional hybridization. Therefore, there was a yield difference due to genomic imprinting, which increased the possibility that paternally and maternally inherited wood production alleles would be differentially expressed in the new crossing.
基金supported by the Ministry of Science and Technology of China (No.2019FY101602)。
文摘Understanding understory seedling regeneration mechanisms is important for the sustainable development of temperate primary forests in the context of increasingly intense climate warming events.The poor regeneration of dominant tree species,however,is one of the biggest challenges it faces at the moment.Especially,the regeneration of the shade-intolerant Quercus mongolica seedling is difficult in primary forests,which contrasts with the extreme abundance of understory seedlings in secondary forests.The mechanism behind the interesting phenomenon is still unknown.This study used in-situ monitoring and nursery-controlled experiment to investigate the survival rate,growth performance,as well as nonstructural carbohydrate (NSC) concentrations and pools of various organ tissues of seedlings for two consecutive years,further analyze the understory light availability and simulate the foliage carbon (C) gain in the secondary and primary forest.Results suggested that seedlings in the secondary forest had greater biomass allocation aboveground,height and specific leaf area (SLA) in summer,which allowed the seedling to survive longer in the canopy closure period.High light availability and positive C gain in early spring and late autumn are key factors affecting the growth and survival of understory seedlings in the secondary forest,whereas seedlings in the primary forest had annual negative carbon gain.Through the growing season,the total NSC concentrations of seedlings gradually decreased,whereas those of seedlings in the secondary forest increased significantly in autumn,and were mainly stored in roots for winter consumption and the following year's summer shade period,which was verified by the nursery-controlled experiment that simulated autumn enhanced light availability improved seedling survival rate and NSC pools.In conclusion,our results revealed the survival trade-off strategies of Quercus mongolica seedlings and highlighted the necessity of high light availability during the spring and autumn phenological periods for shade-intolerant tree seedling recruitment.
基金This study was supported by Science and Technology Program of Heilongjiang Province (GC01KB213), and the Quick Response of Basic Research Supporting Program (2001CCB00600)
文摘One-year-old seedlings of Amur maple (Acer ginnala Maxim), Ussurian pear (Pyrus ussuriensis Maxim) and David peach (Prunus davidiana Carr) were planted in pots in greenhouse and treated with four different soil moisture contents (75.0%, 61.1%, 46.4% and 35.4%). The results showed that net photosynthesis rate (NPR), transpiration rate (TR) and stomatal conductance (Sc) of seedlings of the three species decreased with the decease of soil moisture content, and Amur maple seedlings had the greatest change in those physiological indices, followed by Ussurian pear, David peach. Amur maple and Ussurian pear seedlings also presented a decrease tendency in water use efficiency (WUE) under lower soil moisture content, whereas this was reversed for David peach. Under water stress the biomass allocation to seedling root had a significant increase for all the experimental species. As to root/shoot ratio, Amur maple seedlings had the biggest increase, while David peach had the smallest increase. The leaf plasticity of Amur maple seedlings was greater, the leaf size and total leaf area decreased significantly as the stress was intensified. No significant change of leaf size and total leaf area was found in seedlings of Ussurian pear and David peach. It was concluded that Amur maple was more tolerant to soil moisture stress in comparison with David peach and Ussurian pear.
基金Under the auspices of Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA05060100)National Natural Science Foundation of China(No.41105117)
文摘Numerous studies have focused on vegetation traits and soil properties in grassland, few of which concerned about effects of human utilization patterns on grassland yet. Thus, this study hypothesized that human disturbance(e.g., grazing, mowing and fencing) triggered significant variation of biomass partitioning and carbon reallocation. Besides, there existed some differences of species diversity and soil fertility. To address these hypotheses of grassland with diverse utilization patterns in Hulun Buir City, Inner Mongolia, China, we sampled in situ about aboveground biomass(AGB) and belowground biomass(BGB) to evaluate their biomass allocation. Species diversity and soil properties were also investigated. Subsequently, we discussed the relationship of species diversity with environmental conditions, using data collected from 23 sites during the ecological project period of Returning Grazing Lands to Grasslands(RGLG) program. The results were as follows: 1) both AGB and BGB were lower on grazing regime than those on fencing and mowing, but the ratio of root-to-shoot(R/S) was higher on grazing regime than the other two utilization patterns; 2) neither of evenness and Simpson Index was different significantly among all grassland utilization patterns in desert, typical, and meadow grassland at 0.05. In meadow grassland, species richness of fencing pattern was significantly higher than that of grazing pattern(p < 0.05); 3) both of soil organic carbon content and soil available phosphorous content were increased significantly on fencing pattern than grazing pattern(p < 0.05) in desert grassland, and mowing patterns increased the soil nutrients(soil organic carbon, soil total phosphorous, soil available phosphorous, and soil total nitrogen) significantly compared with grazing patterns(p < 0.05) in typical grassland. However, there were no significant differences among utilization patterns in meadow grassland. In conclusion, both of AGB and BGB were increased significantly by fencing. Moreover, species diversity and soil nutrients can be promoted via mowing and fencing. This study suggested that implementation of Ecological Project played a positive role in sustainable grassland utilization of Hulun Buir City and a strong positive influence on the entire temperate grassland.
基金financially supported by the National Natural Sciences Foundation of China (30771767 and 40601016)
文摘Dew has been recognized for its ecological significance and has also been identified as an additional source of water in arid zones. We used factorial control experiment, under dew presence in the field, to explore photosynthetic performance, water status and growth response of desert annual herbage. Bassia dasyphylla seedlings were grown in contrasting dew treatments (dew-absent and dew-present) and different watering regimes (normal and deficient). The effects of dew on the water status and photosynthetic performance of Bassia dasyphylla grown in a desert area of the Hexi Corridor in Northwestern China, were evaluated. The results indicated the pres- ence of dew significantly increased relative water content (RWC) of shoots and total biomass of plants in both water regimes, and enhanced the diurnal shoot water potential and stomatal conductance in the early morning, as well as photosynthetic rate, which reached its maximum only in the water-stressed regime. The presence of dew increased aboveground growth of plants and photosynthate accumulation in leaves, but decreased the root-to-shoot ratio in both water regimes. Dew may have an important role in improving plant water status and ameliorating the adverse effects of plants exposed to prolonged drought.
基金supported by the Western Light Program of the Chinese Academy of Sciences (XBBS201001)the National Natural Science Foundation of China (40971042, 41371079)the International Science & Technology Cooperation Program of China (2010DFA92720)
文摘Determining the mechanisms underlying the spatial distribution of plant species is one of the central themes in biogeography and ecology. However, we are still far from gaining a full understanding of the autecological processes needed to unravel species distribution patterns. In the current study, by comparing seedling recruitment, seedling morphological performance and biomass allocation of two Haloxylon species, we try to identify the causes of the dune/interdune distribution pattern of these two species. Our results show the soil on the dune had less nutrients but was less saline than that of the interdune; with prolonged summer drought, soil water availability was lower on the dune than on the interdune. Both species had higher densities of seedlings at every stage of recruitment in their native habitat than the adjacent habitat. The contrasting different adaptation to nutrients, salinity and soil water conditions in the seedling recruitment stage strongly determined the distribution patterns of the two species on the dune/interdune. Haloxylon persicum on the dunes had lower total dry biomass, shoot and root dry biomass, but allocated a higher percentage of its biomass to roots and possessed a higher specific root length and specific root area by phenotypic traits specialization than that of Haloxylon ammodendron on the interdune. All of these allowed H. persicum to be more adapted to water stress and nutrient shortage. The differences in morphology and allocation facilitated the ability of these two species to persist in their own environments.
基金funded by grants from the National Basic Research Program of China(2009CB421303)the National Science&Technology Pillar Program(2011BAC07B02)the National Natural Science Foundation of China(40871004)
文摘Optimal partitioning theory (OPT) suggests that plants should allocate relatively more biomass to the organs that acquire the most limited resources. The assumption of this theory is that plants trade off the biomass allocation between leaves, stems and roots. However, variations in biomass allocation among plant parts can also occur as a plant grows in size. As an alternative approach, allometric biomass partitioning theory (APT) asserts that plants should trade off their biomass between roots, stems and leaves. This approach can minimize bias when comparing biomass allocation patterns by accounting for plant size in the analysis. We analyzed the biomass allo- cation strategy of perennial Pennisetum centrasiaticum Tzvel in the Horqin Sand Land of northern China by treating samples with different availabilities of soil nutrients and water, adding snow in winter and water in summer. We hypothesized that P. centrasiaticum alters its pattern of biomass allocation strategy in response to different levels of soil water content and soil nitrogen content. We used standardized major axis (SMA) to analyze the allometric rela- tionship (slope) and intercept between biomass traits (root, stem, leaf and total biomass) of nitrogen/water treat- ments. Taking plant size into consideration, no allometric relationships between different organs were significantly affected by differing soil water and soil nitrogen levels, while the biomass allocation strategy of P. centrasiaticum was affected by soil water levels, but not by soil nitrogen levels. The plasticity of roots, leaves and root/shoot ratios was 'true' in response to fluctuations in soil water content, but the plasticity of stems was consistent for trade-offs between the effects of water and plant size. Plants allocated relatively more biomass to roots and less to leaves when snow was added in winter. A similar trend was observed when water was added in summer. The plasticity of roots, stems and leaves was a function of plant size, and remained unchanged in response to different soil nitrogen levels.
文摘The biomass and ratio of root-shoot of Pinus sylvestfthermis seedlings at Co, concentration of 700 μL L-1 and 50 μL-1L-1 were measured using open-top chambers (OTCs) in Changbai Mountain during Jun. to oct. in 1999. The results showed that doubling CO2 concentration was benefit tb seedling growth of the species (500 μL- L1 was better than 700 μLL’ L-1 ) and the biomass production was increased in both aboveground and underground parts of seedlings. Carbon trans formation to roots was evident as rising of CO2 concentration.
基金The National Key Research and Development Program of China under contract No.2017YFC0506103the National Natural Science Foundation of China under contract Nos 41776097 and 41076049Zhejiang Provincial Natural Science Foundation of China under contract No.LY18C030001
文摘Extensive shrimp ponds are located next to the landward edges of most of mangrove forests in China. A shrimp pond may influence mangroves by(1) routine effluent between pond and tide, and(2) dredging effluent from pond-dredging at least once a year. Our study consisted of two experiments to study the effects of these two effluents on the seedling growth of Kandelia obovata. One experiment simulated the effects of routine effluents.The other simulated four sedimentation thicknesses(0 cm, 2 cm, 4 cm, 8 cm) over mangrove soils by dredging effluent from pond-dredging, and revealed the cumulative effects of dredging effluents on K. obovata. At each of the three fixed salinities, i.e., 5, 15 and 25, routine effluent did not result in significant differences in each of the measured growth parameters of K. obovata seedlings. However, effects of dredging effluent on seedling growth of K. obovata were related with sedimentation thickness. Most growth parameters showed maximum values at sedimentation thickness 4 cm. The data indicated that K. obovata accelerated its growth under moderate sedimentation thicknesses and it was tolerant and adaptable to shrimp pond-cleaning effluent sediments up to about 8 cm in our experiment.
基金supported by the National Basic Research Program of China (2009CB825103)
文摘Clarifying the persistence time of seedlings of dominant species under continual drought will help us understand responses of ecosystems to global climate change and improve revegetation efforts. Drought tolerance of four dominant psammophytic shrub species occurring in different environments was studied in the semi-arid areas of Inner Mongolian grasslands. Seedlings of Hedysarum laeve, Caragana korshinskii, Artemisia sphaerocephala and Artemisia ordosica were grown under four air temperature regimes (night/day: 12.5/22.5℃, 15/25℃, 17.5/27.5℃ and 20/30℃) within climate (air temperature and humidity) controlled, naturally lit glasshouses with a night/day relative humidity of 70%/50%. Pots were watered to field capacity for each temperature treatment. Soil water condition was monitored by weighting each pot every day using an electronic balance. Date of seedling death for each treatment was recorded and the dead plants were harvested. Plant dry weights were determined after oven drying at 80℃ for 3 days. Two Artemisia species had higher growth rates than H. laeve and C. korshinskii, and the growth of all four species increased with increasing temperatures. The two Artemisia species had the highest leaf biomass increment, followed by C. korshinskii, and then H. laeve. Shoot biomass increment was higher for A. ordosica and C. korshinskii, intermediate for A. sphaerocephala and lowest for H. laeve. C. korshinskii had the highest root biomass increment. The final soil water content at death for all four species varied from 1% to 2%. C. korshinskii, A. sphaerocephala, H. laeve and A. ordosica survived for 25-43, 24-41, 26-41 and 24-37 days without watering, respectively. C. korshinskii, A. sphaerocephala, H. Laeve, and A. ordosica seedlings survived longer at the lowest temperatures (12.5/22.5℃) than at the highest temperatures (20/30℃) by 18, 17, 15 and 13 days, respectively. Increased climatic temperatures induce the death of seedlings in years with long intervals between rainfall events. The adaptation of seedlings to droughts should be emphasized in revegetation efforts in the Ordos Plateau, Inner Mongolia.