期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Electromotive Force for Solid Oxide Fuel Cells Using Biomass Produced Gas as Fuel 被引量:2
1
作者 Wei Zhu Yan-hong Yin +2 位作者 Cen Gao Chang-rong Xia Guang-yao Meng 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 北大核心 2006年第4期325-328,共4页
The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis... The electromotive force (e.m.f.) of solid oxide fuel cells using biomass produced gas (BPG) as the fuels is calculated at 700-1,200 K using an in-house computer program, based on thermodynamic equilibrium analysis. Tour program also predicts the concentration of oxygen in the fuel chamber as well as the concentration of equilibrium species such as H2, CO, CO2 and CH4. Compared with using hydrogen as a fuel, the e.m.f. for cells using BPG as the fuels is relative low and strongly influenced by carbon deposition. To remove carbon deposition, the optimum amount of H2O to add is determined at various operating temperatures. Further the e.m.f, for cells based on yttria stabilized zirconia and doped ceria as electrolytes are compared. The study reveals that when using BPG as fuel, the depression of e.m.f, for a SOFC using doped ceria as electrolyte is relatively small when compared with that using Yttria stabilized zirconia. 展开更多
关键词 biomass produced gas Electromotive force Solid oxide fuel cells Thermodynamic equilibrium
下载PDF
Research on Modeling and Control of a 100 kW Micro Bio-Gas Turbine
2
作者 Xiaotao Zhang Xiang Liu +2 位作者 Haoliang Mu Wenxian Zhang Aijun Wang 《Journal of Power and Energy Engineering》 2021年第2期1-6,共6页
In order to know about the influences of disturbance on the operating performance, the present work developed the overall dynamic simulation model of the micro gas turbine and investigated the control system under the... In order to know about the influences of disturbance on the operating performance, the present work developed the overall dynamic simulation model of the micro gas turbine and investigated the control system under the disturbances of environmental temperature and unit load. The response processes of main parameters have been obtained. It found that the compressor pressure ratio and the fuel flow rate increase in the case of natural gas being replaced by pine gas. When the system reaches a new steady state, the main parameters change to different values. The output power decreases with the declining of the air mass flow when the ambient temperature rises, the biomass gas mass flow rate increases under the regulation of the control system to maintain the output power and rotating speed in which the thermal efficiency reduces by 1.40%. The thermal efficiency enhances with the increase of output load. The control system can quickly and effectively act to maintain the key parameters at desired value. 展开更多
关键词 Micro gas Turbine biomass gas Overall Model Turbine Control System
下载PDF
Fundamental study on iron ore sintering new process of flue gas recirculation together with using biochar as fuel 被引量:3
3
作者 甘敏 范晓慧 +3 位作者 姜涛 陈许玲 余志元 季志云 《Journal of Central South University》 SCIE EI CAS 2014年第11期4109-4114,共6页
It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is brok... It is of great significance for cleaner production to substitute bio-energy for fossil fuels in iron ore sintering. However, with the replacement ratio increasing, the consistency of heat front and flame front is broken, and the thermal utilizing efficiency of fuel is reduced, which results in the decrease of yield and tumble index of sinter. Circulating flue gas to sintering bed as biochar replacing 40% coke, CO in flue gas can be reused so as to increase the thermal utilizing efficiency of fuels, and the consistency of two fronts is recovered for the circulating flue gas containing certain CO2, H2 O and lower O2, which contributes to increasing the maximum temperature, extending the high temperature duration time of sintering bed, and results in improving the output and quality of sinter. In the condition of circulating 40% flue gas, the sintering with biomass fuels is strengthened, and the sintering indexes with biomass fuel replacing 40% coke breeze are comparative to those of using coke breeze completely. 展开更多
关键词 iron ore sintering biomass fuel flue gas recirculation
下载PDF
Insight into the selective separation of CO_(2)from biomass pyrolysis gas over metal-incorporated nitrogen-doped carbon materials:a first-principles study
4
作者 Li Zhao Xinru Liu +5 位作者 Zihao Ye Bin Hu Haoyu Wang Ji Liu Bing Zhang Qiang Lu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第3期1-12,共12页
The composition of biomass pyrolysis gas is complex,and the selective separation of its components is crucial for its further utilization.Metal-incorporated nitrogen-doped materials exhibit enormous potential,whereas ... The composition of biomass pyrolysis gas is complex,and the selective separation of its components is crucial for its further utilization.Metal-incorporated nitrogen-doped materials exhibit enormous potential,whereas the relevant adsorption mechanism is still unclear.Herein,16 metal-incorporated nitrogen-doped carbon materials were designed based on the density functional theory calculation,and the adsorption mechanism of pyrolysis gas components H2,CO,CO_(2),CH_(4),and C2H6 was explored.The results indicate that metal-incorporated nitrogen-doped carbon materials generally have better adsorption effects on CO and CO_(2)than on H_(2),CH_(4),and C_(2)H_(6).Transition metal Mo-and alkaline earth metal Mg-and Ca-incorporated nitrogen-doped carbon materials show the potential to separate CO and CO_(2).The mixed adsorption results of CO_(2)and CO further indicate that when the CO_(2)ratio is significantly higher than that of CO,the saturated adsorption of CO_(2)will precede that of CO.Overall,the three metal-incorporated nitrogen-doped carbon materials can selectively separate CO_(2),and the alkaline earth metal Mg-incorporated nitrogen-doped carbon material has the best performance.This study provides theoretical guidance for the design of carbon capture materials and lays the foundation for the efficient utilization of biomass pyrolysis gas. 展开更多
关键词 CO_(2)capture biomass pyrolysis gas selective adsorption carbon materials FIRST-PRINCIPLES
原文传递
Auto-ignition of biomass synthesis gas in shock tube at elevated temperature and pressure 被引量:2
5
作者 Linqi Ouyang Hua Li +2 位作者 Shuzhou Sun Xiaole Wang Xingcai Lu 《Science Bulletin》 SCIE EI CAS CSCD 2015年第22期1935-1946,共12页
Ignition delay times of multi-component biomass synthesis gas (bio-syngas) diluted in argon were measured in a shock tube at elevated pressure (5, 10and 15 bar, 1 bar = 105 Pa), wide temperature ranges (1,100-1,7... Ignition delay times of multi-component biomass synthesis gas (bio-syngas) diluted in argon were measured in a shock tube at elevated pressure (5, 10and 15 bar, 1 bar = 105 Pa), wide temperature ranges (1,100-1,700 K) and various equivalence ratios (0.5, 1.0, 2.0). Additionally, the effects of the variations of main constituents (H2:CO = 0.125-8) on ignition delays were investigated. The experimental results indicated that the ignition delay decreases as the pressure increases above certain temperature (around 1,200 K) and vice versa. The ignition delays were also found to rise as CO concentration increases, which is in good agreement with the literature. In addition, the ignition delays of bio-syngas were found increasing as the equivalence ratio rises. This behavior was primarily discussed in present work. Experimental results were also compared with numerical predictions of multiple chemical kinetic mechanisms and Li's mechanism was found having the best accuracy. The logarithmic ignition delays were found nonlinearly decrease with the H2 concentration under various conditions, and the effects of temperature, equivalence ratio and H2 concentration on the ignition delays are all remarkable. However, the effect of pressure is rela- tively smaller under current conditions. Sensitivity analysis and reaction pathway analysis of methane showed that R1 (H +O2= O -9 OH) is the most sensitive reaction promot- ing ignition and R13 (H +O2 (+M) = HO2 (+M)), R53(CH3+H (+M)= CH4 (+M)), R54 (CH4+H= CH3 + H2) as well as R56 (CH4 + OH = CH3 + H2O) are key reactions prohibiting ignition under current experimental conditions. Among them, R53 (CH3 + H (+M) = CH4 (+M)), R54 (CH4 + H = CH3 + H2) have the largest posi- tive sensitivities and the high contribution rate in rich mixture. The rate of production (ROP) of OH of R1 showed that OH ROP of R1 decreases sharply as the mixture turns rich. Therefore, the ignition delays become longer as the equiva- lence ratio increases. 展开更多
关键词 Shock tube biomass synthesis gas Ignition delay time Sensitivity analysis Reactionpathway analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部