The development of a selective catalyst for the conversion of biomass and plastics into H2by steam reforming can combat the energy crisis and global warming.In this work,support Ni-Fe-Ca/H-Al bifunctional catalysts we...The development of a selective catalyst for the conversion of biomass and plastics into H2by steam reforming can combat the energy crisis and global warming.In this work,support Ni-Fe-Ca/H-Al bifunctional catalysts were prepared by loading Ni and Fe into pretreatment CaO/Al_(2)O_(3)(Ca/H-Al)carriers and showed high catalytic activity for the steam reforming of biomass and plastic.Moreover,the idea of bidirectional degradation was exploited to strengthen the pyrolysis of plastic with a high H/C and biomass with a high O/C.Interestingly,the products presented high H2selective(1302.10 m L/g)and low CO_(2)yield(120.23 m L/g)in 7Ni-5Fe-Ca/H-Al(2:4)catalyst compared with current reports.Here,the abundant oxygen vacancies(Ov)in the H-Al carrier exhibited an electron-deficient nature,providing active sites for anchoring Ni O.Meanwhile,Ni O interacted with Ca_(2)Fe_(2)O_(5)to produce more defective Ovsites,which stabilized the NiO particles in the 7Ni-5Fe-Ca/H-Al(2:4)catalyst,and the interaction between the catalyst and the carrier was enhanced,leading to the reduction of weakly basic sites,this property promoted the strong adsorption of CO_(2)and H2O by the catalyst,contributing to the enhancement of efficient steam conversion and the promotion of conversion of by-products to H2.Notably,7Ni-5Fe-Ca/H-Al(2:4)catalysts maintained structural integrity after regeneration and exhibited excellent regenerability in H2selection and CO_(2)adsorption.The work provides a new idea for the study of efficient H2production from steam reforming of biomass and plastics.展开更多
基金the National Natural Science of China(21968037)the Reserve Program for Young and Middle-aged Academic and Technical Leaders in Yunnan Province(202205AC160031)+1 种基金the Research Innovation Project of Yunnan University for Graduate Students on Exemption,the Highlevel Talent Promotion and Training Project of Kunming(2022SCP003)advanced analysis and measurement center of Yunnan university for the sample testing service。
文摘The development of a selective catalyst for the conversion of biomass and plastics into H2by steam reforming can combat the energy crisis and global warming.In this work,support Ni-Fe-Ca/H-Al bifunctional catalysts were prepared by loading Ni and Fe into pretreatment CaO/Al_(2)O_(3)(Ca/H-Al)carriers and showed high catalytic activity for the steam reforming of biomass and plastic.Moreover,the idea of bidirectional degradation was exploited to strengthen the pyrolysis of plastic with a high H/C and biomass with a high O/C.Interestingly,the products presented high H2selective(1302.10 m L/g)and low CO_(2)yield(120.23 m L/g)in 7Ni-5Fe-Ca/H-Al(2:4)catalyst compared with current reports.Here,the abundant oxygen vacancies(Ov)in the H-Al carrier exhibited an electron-deficient nature,providing active sites for anchoring Ni O.Meanwhile,Ni O interacted with Ca_(2)Fe_(2)O_(5)to produce more defective Ovsites,which stabilized the NiO particles in the 7Ni-5Fe-Ca/H-Al(2:4)catalyst,and the interaction between the catalyst and the carrier was enhanced,leading to the reduction of weakly basic sites,this property promoted the strong adsorption of CO_(2)and H2O by the catalyst,contributing to the enhancement of efficient steam conversion and the promotion of conversion of by-products to H2.Notably,7Ni-5Fe-Ca/H-Al(2:4)catalysts maintained structural integrity after regeneration and exhibited excellent regenerability in H2selection and CO_(2)adsorption.The work provides a new idea for the study of efficient H2production from steam reforming of biomass and plastics.