Globally,various types of pollution affect coastal waters as a result of human activities.Bioaugmentation and biostimulation are effective methods for treating water pollution.However,few studies have explored the res...Globally,various types of pollution affect coastal waters as a result of human activities.Bioaugmentation and biostimulation are effective methods for treating water pollution.However,few studies have explored the response of coastal prokaryotic and eukaryotic communities to bioaugmentation and biostimulation.Here,a 28-day outdoor mesocosm experiment with two treatments(bioaugmentation-A and combined treatment of bioaugmentation and biostimulation-AS)and a control(untreated-C)were carried out.The experiment was conducted in Meishan Bay to explore the composition,dynamics,and co-occurrence patterns of prokaryotic and eukaryotic communities in response to the A and AS using 16S rRNA and 18S rRNA gene amplicon sequencing.After treatment,Gammaproteobacteria and Epsilonproteobacteria were significantly increased in group AS compared to group C,while Flavobacteriia and Saprospirae were significantly reduced.Dinoflagellata was significantly reduced in AS compared to C,while Chrysophyta was significantly reduced in both AS and A.Compared to C,the principal response curve analyses of the prokaryotic and eukaryotic communities both showed an increasing trend followed by a decreasing trend for AS.Furthermore,the trends of prokaryotic and eukaryotic communities in group A were similar to those in group AS compared with group C,but AS changed them more than A did.According to the species weight table on principal response curves,a significant increase was observed in beneficial bacteria in prokaryotic communities,such as Rhodobacterales and Oceanospirillales,along with a decrease in autotrophs in eukaryotic communities,such as Chrysophyta and Diatom.Topological properties of network analysis reveal that A and AS complicate the interactions between the prokaryotic and eukaryotic communities.Overall,these findings expand our understanding of the response pattern of the bioaugmentation and biostimulation on coastal prokaryotic and eukaryotic communities.展开更多
In this study, biostimulation technology was used for bioremediation of nitrobenzene-contaminated groundwater by adding a mixture of lactose and phosphate, peptone, and beef extract. During the process of biostimulati...In this study, biostimulation technology was used for bioremediation of nitrobenzene-contaminated groundwater by adding a mixture of lactose and phosphate, peptone, and beef extract. During the process of biostimulation, the remediation effectiveness, microbial dehydrogenase activities and microbial densities were investigated; the varieties of microbial community structure and composition were analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE) technique and the relative abundances of nitrobenzene-degrading gene(nbzA) were determined by fluorescence quantitative real-time PCR(RT-PCR). Findings show that the removal rate of nitrobenzene in groundwater could reach about 60% by biostimulation with lactose and phosphate, 70% with peptone and 68% with beef extract. The microbial dehydrogenase activities and microbial densities were all improved obviously via biostimulation. The results of PCR-DGGE show that the microbial diversities were improved, and more than ten kinds of dominant microorganisms were detected after biostimulation. RT-PCR results show that the relative abundances of nbzA gene of microbes in groundwater were increased significantly, which indicated that biostimulation actually enhanced the growth of nitrobenzene-degrading bacteria. Therefore, biostimulation is a cost-effective and feasible bioremediation technique for nitrobenzene-contaminated groundwater.展开更多
A bench-scale biopiling experiment was conducted to hydrocarbon bioremediation in a chronically contaminated soil compare the ability of different techniques to enhance petroleum After 195 days, 10%-32% removal of TP...A bench-scale biopiling experiment was conducted to hydrocarbon bioremediation in a chronically contaminated soil compare the ability of different techniques to enhance petroleum After 195 days, 10%-32% removal of TPHs (total petroleum hydrocarbons) occurred in unamended soil (control). Biostimulation by inorganic nutrient addition enhanced TPH removal (49%) confirming that bioremediation was nutrient limited and the soil contained a well-adapted hydrocarbonoclastic microbial community. The addition of organic amendments including green waste at 25% and 50% (w/w) and a commercial product called DaramendTM had a further biostimulatory effect (50%-66%, 34%-59% and 69%-80% TPH removal respectively). Bioaugmentation using two commercially available petroleum hydrocarbon degrading microbial cultures with nutrients enhanced TPH removal in the case of RemActivTM (60%-69%), but had a marginal effect using Recycler 102 (49%-55%). The effect of a non-ionic surfactant in green waste amended soil was variable (52%-72% TPH reduction), but its potential to enhance biodegradation presumably by promoting contaminant bioavailability was demonstrated. High degradation of artificially added polycyclic aromatic hydrocarbons (PAHs) occurred after 106 days (75%-84%), but significant differences between the control and treatments were unapparent, suggesting that spiked soils do not reflect the behavior of contaminants in genuinely polluted and weathered soil.展开更多
Multiple biostimulation treatments were applied to enhance the removal of heavy crude oil pollutants in the saline soil of Yellow River Delta.Changes of the soil bacterial community were monitored using the terminal r...Multiple biostimulation treatments were applied to enhance the removal of heavy crude oil pollutants in the saline soil of Yellow River Delta.Changes of the soil bacterial community were monitored using the terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses.The 140-day microcosm experiments showed that low C:N:P ratio,high availability of surfactant and addition of bulking agent significantly enhanced the performance,leading to the highest total petroleum hydrocarbon removal.Meanwhile,the bacterial community was remarkably changed by the multiple biostimulation treatments,with the Deltaproteobacteria,Firmicutes,Actinobacteria,Acidobacteria and Planctomycetes being inhibited and the Alphaand Beta-proteobacteria and some unknown Gammaproteobacteria bacteria being enriched.In addition,different hydrocarbon-degraders came to power in the following turn.At the first stage,the Alcanivorax-related Gammaproteobacteria bacteria dominated in the biostimulated soil and contributed mainly to the biodegradation of easily degradable portion of the heavy crude oil.Then the bacteria belonging to Alphaproteobacteria,followed by bacteria belonging to Candidate division OD1,became the dominant oil-degraders to degrade the remaining recalcitrant constituents of the heavy crude oil.展开更多
The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane(DDT) and its metabolites 1,1-di...The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane(DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane(DDD) and1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene(DDE) were monitored during an 8-week remediation process. Physicochemical characterization of the treated soil was performed before and after the bioremediation process. The isolation and identification of predominant microorganisms during the remediation process were also carried out. The efficiency of detoxification was evaluated after each bioremediation protocol. Humidity and p H and the heterotrophic microorganism count were monitored weekly. The DDT concentration was reduced by 79% after 8 weeks via biostimulation with surfactant addition(B + S) and 94.3%via biostimulation alone(B). Likewise, the concentrations of the metabolites DDE and DDD were reduced to levels below the quantification limits. The microorganisms isolated during bioremediation were identified as Bacillus thuringiensis, Flavobacterium sp., Cuprivadius sp.,Variovorax soli, Phenylobacterium sp. and Lysobacter sp., among others. Analysis with scanning electron microscopy(SEM) allowed visualization of the colonization patterns of soil particles. The toxicity of the soil before and after bioremediation was evaluated using Vibrio fischeri as a bioluminescent sensor. A decrease in the toxic potential of the soil was verified by the increase of the concentration/effect relationship EC50 to 26.9% and 27.2% for B + S and B, respectively, compared to 0.4% obtained for the soil before treatment and 2.5%by natural attenuation after 8 weeks of treatment.展开更多
Bacillus thuringiensis/cereus L2 was added as a biostimulant to enhance the biomass accumulation and carotenoid yield of Rhodobacter sphaeroides using wastewater as the culturing medium. Results showed that biostimula...Bacillus thuringiensis/cereus L2 was added as a biostimulant to enhance the biomass accumulation and carotenoid yield of Rhodobacter sphaeroides using wastewater as the culturing medium. Results showed that biostimulation could significantly enhance the R. sphaeroides biomass production and carotenoid yield. The optimal biostimulant proportion was 40 μL(about 6.4 × 10^5CFU). Through the use of biostimulation, chemical oxygen demand removal, R. sphaeroides biomass production, carotenoid concentration, and carotenoid yield were improved by 178%, 67%, 214%, and 70%, respectively. Theoretical analysis revealed that there were two possible reasons for such increases. One was that biostimulation enhanced the R. sphaeroides wastewater treatment efficiency. The other was that biostimulation significantly decreased the peroxidase activity in R. sphaeroides. The results showed that the highest peroxidase activity dropped by 87% and the induction ratio of the RSP_3419 gene was 3.1 with the addition of biostimulant. The enhanced carotenoid yield in R. sphaeroides could thus be explained by a decrease in peroxidase activity.展开更多
BACKGROUND Pelvic floor dysfunction(PFD)is related to muscle fiber tearing during childbirth,negatively impacting postpartum quality of life of parturient.Appropriate and effective intervention is necessary to promote...BACKGROUND Pelvic floor dysfunction(PFD)is related to muscle fiber tearing during childbirth,negatively impacting postpartum quality of life of parturient.Appropriate and effective intervention is necessary to promote PFD recovery.AIM To analyze the use of hydrogen peroxide and silver ion disinfection for vaginal electrodes in conjunction with comprehensive rehabilitation therapy for postpartum women with PFD.METHODS A total of 59 women with PFD who were admitted to the hospital from May 2019 to July 2022 were divided into two groups:Control group(n=27)received comprehensive rehabilitation therapy and observation group(n=32)received intervention with pelvic floor biostimulation feedback instrument in addition to comprehensive rehabilitation therapy.The vaginal electrodes were disinfected with hydrogen peroxide and silver ion before treatment.Intervention for both groups was started 6 weeks postpartum,and rehabilitation lasted for 3 months.Pelvic floor muscle voltage,pelvic floor muscle strength,vaginal muscle voltage,vaginal muscle tone,pelvic floor function,quality of life,and incidence of postpartum PFD were compared between the two groups.RESULTS Before comprehensive rehabilitation treatment,basic data and pelvic floor function were not significantly different between the two groups.After treatment,the observation group showed significant improvements in the maximum voltage and average voltage of pelvic floor muscles,contraction time of type I and type II fibers,pelvic floor muscle strength,vaginal muscle tone,vaginal muscle voltage,and quality of life(GQOLI-74 reports),compared with the control group.The observation group had lower scores on the pelvic floor distress inventory(PFDI-20)and a lower incidence of postpartum PFD,indicating the effectiveness of the pelvic floor biostimulation feedback instrument in promoting the recovery of maternal pelvic floor function.CONCLUSION The combination of the pelvic floor biostimulation feedback instrument and comprehensive rehabilitation nursing can improve pelvic floor muscle strength,promote the recovery of vaginal muscle tone,and improve pelvic floor function and quality of life.The use of hydrogen peroxide and silver ion disinfectant demonstrated favorable antibacterial efficacy and is worthy of clinical application.展开更多
Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimul...Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimulate this degradation by different means. Thus, this study aimed to improve the bio-degradation of diesel and crude oil in a Ghanaian soil by biostimulation. For this, the sampled soil was characterized by standard methods and contaminated with diesel and crude oil at a proportion of 1% (w/w). Then, contaminated soil samples were supplemented with biochar-compost, poultry manure or cow dung at the proportion of 10% (w/w). Periodically, fractions of these samples were taken to evaluate the density of hydrocarbon utilizing bacteria (HUB) and the residual quantities of diesel or crude oil. The characteristics of the soil used show the need for supplementation for better degradation of hydrocarbons. The results of the study show that supplementing the soil with organic substrates increases HUB loads in soils contaminated by diesel and crude oil. They also show that the residual quantities of diesel and crude oil are generally significantly lower in supplemented soils (p = 0.048 and p < 0.0001 respectively). In addition, the study shows that degradation was generally greater in soils contaminated by diesel compared to those contaminated by crude oil, especially at the end of the study.展开更多
Melatonin is a conserved pleiotropic molecule in animals and plants.Melatonin is involved in many development processes and stress responses;thus,exploring its function in plants,particularly in horticultural plants,h...Melatonin is a conserved pleiotropic molecule in animals and plants.Melatonin is involved in many development processes and stress responses;thus,exploring its function in plants,particularly in horticultural plants,has become a rapidly developing field.Many studies have revealed that phytomelatonin acts as a plant biostimulant and increase its tolerance to various abiotic stressors,including extreme temperature,drought,osmotic disturbance,heavy metals,and ultraviolet(UV).Melatonin appears to have roles in the scavenging of reactive oxygen species(ROS)and other free radicals,affecting the primary and secondary metabolism of plants,regulating the transcripts of stress-related enzymes and transcription factors,and crosstalk with other hormones under different environmental conditions.This pleiotropy makes phytomelatonin an attractive regulator to improve resistance to abiotic stress in plants.The recent discovery of the potential phytomelatonin receptor CAND2/PMTR1 and the proposition of putative models related to the phytomelatonin signaling pathways makes phytomelatonin a new plant hormone.Based on relevant studies from our laboratory,this review summarizes the phytomelatonin biosynthetic and metabolic pathways in plants and the latest research progress on phytomelatonin in abiotic stress of horticultural plants.This study will provide a reference for elucidating the regulatory mechanism of phytomelatonin affecting the resistance to abiotic stress in plants.展开更多
Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of ...Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of Polygonum minus extract(PME)in enhancing drought tolerance in plants,a study was set up in a glasshouse environment using 10 different treatment combinations.PME foliar application were designed in CRD and effects were closely observed related to the growth,physiology,and antioxidant system changes in maize(Zea mays L.)under well-watered and drought conditions.The seaweed extract(SWE)was used as a comparison.Plants subjected to drought stress exhibited a significant reduction in fresh weight,dry weight,relative water content(RWC),and soluble sugar,but they stimulated the phenolic,flavonoid,proline,glutathione(GSH),malondialdehyde(MDA)and antioxidant enzyme(catalase,CAT;peroxidase,POD;superoxide dismutase,SOD)activities.Foliar application of PME improved fresh and dry weight(FW:33.1%~41.4%;DW:48.0%~43.1%),chlorophyll content(Chl b:87.9%~100.76%),soluble sugar(23.6%~49.3%),and soluble protein(48.6%~56.9%)as well as antioxidant enzyme activities(CAT and POD)compared to CK under drought conditions.while decreasing the level of MDA.Notably,the mitigating effect of PME application with high concentration was more effective than those of SWE.Our study reveals that PME could alleviate drought stress by regulating osmoprotectant content and antioxidant defense system and can be used as an economical and environmentally friendly biostimulants for promoting maize growth under drought stress.展开更多
Nutrient management plays a crucial role in the yield and quality of sweet corn.A field experiment was conducted in consecutive two kharif seasons in 2018 and 2019 to investigate the effect of various organic sources ...Nutrient management plays a crucial role in the yield and quality of sweet corn.A field experiment was conducted in consecutive two kharif seasons in 2018 and 2019 to investigate the effect of various organic sources of nutrients in combination with inorganic sources on the yield and quality of sweet corn under new alluvial soils of West Bengal,India.Treatments were:T_(1):Control(without fertilizers);T_(2):100%recommended dose(RDF)of chemical fertilizers(CF)(RDF CF_(100%));T_(3):100%recommended dose of N(RDN)through vermicompost(VC)(RDN VC_(100%));T_(4):50 RDN through CF+50%RDN through VC(RDN CF_(50%)+RDN VC50%);T_(5):50%RDF through CF+50%RDN through organic source(OS)1,Soligro(Ascophyllum nodosum)granular(RDN CF_(50%)+RDN OS_(150%));T6:50%RDN through CF+50%RDN through OS 2,Bioenzyme(liquid)(RDN CF_(50%)+RDN OS250%);T7:50%RDN through CF+50%RDN through OS 3,Opteine(Ascophyllum nodosum)filtrate[RDN CF_(50%)+RDN OS350%];T8:50%RDN through VC+50%RDF through OS 1,Soligro(Ascophyllum nodosum)granular(RDN VC50%+RDN OS_(150%)).The OS of fertilizers were VC,SoliGro Gr(OS1)(Ascophyllum nodosum),Bioenzyme liquid(OS2),and Opteine(Ascophyllum nodosum)filtrate(OS3).The inorganic source was traditional CF applied at the RDF(150:75:75 kg ha^(−1) of N:P2O5:K2O).The VC was used to supply 100%RDN as one source or 50%RDN when combined with CF or OS.Maximum fruit yield(10.75 and 10.79 t ha^(−1) in 2018 and 2019,respectively)was recorded when RDF was substituted through CF only,being statistically at par with 50%CF+50%VC on a nitrogen equivalent basis(9.92 and 10.00 t ha^(−1) in 2018 and 2019,respectively)and 100%VC(8.22 and 8.32 t ha^(−1) in 2018 and 2019,respectively).Compared to chemical sources of nutrients,VC-based treatments produced a larger percentage of large-size cob(>25 cm).The 100%VC increased antioxidant(8.35 and 8.45 mg g^(−1)),carotenoid(0.59 and 0.61 mg/100 g),and phenol(55.06 and 55.02 mg 100 g^(−1))content compared with its 50%dose in combination with other sources.The study revealed the potentiality of organic sources towards achieving improved cob quality of sweet corn.展开更多
Biodegradable nanoparticles such as chitosan nanoparticles (CSNPs) are used in sustainable agriculture since theyavoid damage to the environment;CSNPs have positive effects such as the accumulation of bioactive compou...Biodegradable nanoparticles such as chitosan nanoparticles (CSNPs) are used in sustainable agriculture since theyavoid damage to the environment;CSNPs have positive effects such as the accumulation of bioactive compoundsand increased productivity in plants. This study aimed to investigate the impact of applying CSNPs on lettuce,specifically focusing on enzymatic activity, bioactive compounds, and yield. The trial was conducted using a completelyrandomized design, incorporating CSNPs: 0, 0.05, 0.1, 0.2, 0.4, and 0.8 mg mL−1. The doses of 0.4 mg mL−1improve yields up to 24.6% increases and 0.1 mg mL−1 of CSNPs increases total phenols by 31.2% and antioxidantcapacity by 34.6%. In addition, when low concentrations of CSNPs (0.05 and 0.1 mg L−1) were applied, anincrease in catalase was determined. The CSNPs represent a good alternative to be used as a biostimulant in sustainableagriculture because they improve the yield and quality of lettuce by increasing the bioactive compounds.展开更多
A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant b...A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant biostimulants(PBs)in production can reduce the application of traditional pesticides and chemical fertilizers and improvethe quality and yield of crops,which is conducive to the sustainable development of agriculture.An in-depthunderstanding of the mechanism and effect of various PBs is very important for how to apply PBs reasonablyand effectively in the practice of crop production.This paper summarizes the main classification of PBs;Thegrowth promotion mechanism of PBs was analyzed from four aspects:improving soil physical and chemical properties,enhancing crop nutrient absorption capacity,photosynthesis capacity,and abiotic stress tolerance;At thesame time,the effects of PBs application on seed germination,seedling vigor,crop yield,and quality were summarized;Finally,how to continue to explore and study the use and mechanism of PBs in the future is analyzedand prospected,to better guide the application of PBs in crop production in the future.展开更多
The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and...The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and ecological development of agriculture.In this study,1.0 and 2.0 g•m^(-2) of the biostimulant were applied to soil in rice seedbeds.Growth indicators of rice,antioxidant enzyme activities and soil physicochemical characteristics were assessed at the 2.5-leaf and 4-leaf stages of rice.The results indicated that applying 2.0 g•m^(-2) of the biostimulant at both the 2.5-leaf and 4-leaf stages had the most significant promoting effect on rice growth.At the 2.5-leaf and 4-leaf stages,the number of fibrous roots increased by 23.43%and 22.25%,stem base width increased by 19.05%and 19.58%,above ground dry weight increased by 18.09%and 16.47%,root dry weight increased by 19.67%and 18.28%,leaf peroxidase(POD)activity increased by 34.44%and 42.94%,superoxide dismutase(SOD)activity increased by 37.24%and 56.79%,malondialdehyde(MDA)content decreased by 18.60%and 27.67%,and chlorophyll content increased significantly by 28.31%and 34.24%,respectively.At the 4-leaf stage of rice,urease,phosphatase and cellulase activities in the seedbed soil increased by 42.13%,25.96%and 33.59%,respectively,while soil alkaline nitrogen,available phosphorus and available potassium content decreased by 19.76%,19.02%and 17.88%,respectively.The application of biostimulants played a crucial role in promoting the growth of rice seedlings and enhancing soil nutrient absorption.展开更多
Beans (Phaseolus vulgaris L.) are widely grown in Cameroon and play a key role in the fight against food insecurity, malnutrition and poverty. However, its cultivation encounters problems due to abiotic and biotic str...Beans (Phaseolus vulgaris L.) are widely grown in Cameroon and play a key role in the fight against food insecurity, malnutrition and poverty. However, its cultivation encounters problems due to abiotic and biotic stresses, which leads to the use of synthetic fertilizers and pesticides, which cause significant damage to the environment and human health due to the presence of synthetics residues in the seeds, pods and in the leaves that are eaten. Promoting the use of natural products is becoming a necessity for organic and eco-responsible agriculture that limits contamination problems and improves people’s purchasing power. This study aims to assess the effect of biostimulants based on natural products on the growth and nutritional value of common bean (Phaseolus vulgaris L.). Bean seedlings from white variety (MEX-142) and red variety (DOR-701) were treated every seven days in the field from their pre-emergence, emergence and growth to their maturation under a randomized block experimental design. Six treatments and three repetitions with the biostimulants based on natural products and controls were thus performed and the agromorphological parameters were measured. After 120 days, the contents of growth biomarkers and defense-related enzymes were evaluated in leaves, while the contents of macromolecules, minerals and antinutrients were evaluated in seeds. These biostimulants significantly increased (P P < 0.0001) of antinutrients including oxalates, phytates, tannins and saponins in seeds compared to controls (T+ and T−). Treatment with biostimulants, in particular BS4, improves the performance of bean plants in the field as well as the biofortification of seeds regardless of the variety.展开更多
1,2-Dichloroethane (DCA), a potential mutagen and carcinogen, is commonly introduced into the environment through its industrial and agricultural use. In this study, the impact of lead and mercury on DCA degradation...1,2-Dichloroethane (DCA), a potential mutagen and carcinogen, is commonly introduced into the environment through its industrial and agricultural use. In this study, the impact of lead and mercury on DCA degradation in soil was investigated, owing to the complex co-contamination problem frequently encountered in most sites. 1,2-Dichloroethane was degraded readily in both contaminated loam and clay soils with the degradation rate constants ranging between 0.370-0.536 week-1 and 0.309-0.417 week-1, respectively. The presence of heavy metals have a negative impact on DCA degradation in both soil types, resulting in up to 24.11% reduction in DCA degradation within one week. Both biostimulation and treatment additives increased DCA degradation, with the best degradation observed upon addition of glucose and a combination of diphosphate salt and sodium chloride, leading to about 17.91% and 43.50% increase in DCA degradation, respectively. The results have promising potential for effective remediation of soils co-contaminated with chlorinated organics and heavy metals. However, the best bioremediation strategy will depend on the soil types, microbial population present in the soil matrices, nutrients availability and metal forms.展开更多
The addition of nutrients to accelerate biodegradation of oil is an adequate strategy to clean up polluted mangrove soils which pollutes mangrove soils. However, the hydrology of these ecosystems might interfere with ...The addition of nutrients to accelerate biodegradation of oil is an adequate strategy to clean up polluted mangrove soils which pollutes mangrove soils. However, the hydrology of these ecosystems might interfere with such strategy. The effect of flooding frequency and nutrient addition on hydrocarbon removal in mangrove sediments was investigated in this study. Microcosms consisted of pots with 5 kg of fresh mangrove sediments and one seedling of Avicennia germinans. Treatments included: planted microcosms with fertilizer and crude oil (PNC), planted microcosms with oil (PC), non-planted microcosms with oil and fertilizer (NC), planted microcosms with fertilizer (PN) and planted microcosms without oil or fertilizer (P). Mexican Maya crude oil and inorganic nutrients were added in a single dose of approximately 5.0 g DW·kg-1, 0.33 g of N DW·kg-1 and 0.06 g P DW·kg-1. Microcosms were either permanently flooded (PF) or intermittently flooded (IF: 14 hours drained and 10 hours flooded), and kept in a glasshouse in Xalapa, Veracruz, Mexico. In both flooding conditions, oil decreased the relative growth rate of A. germinans by 56% in (PC) treatments and 40% in (PNC) treatments. Redox potential in the oiled treatments (-44.73 to +75.34 mV) was lower than non-oiled treatments (-1.31 to +163.43 mV). Total Petroleum Hydrocarbons (TPHs) removal in PC treatments was low in both permanent (2.99% ± 3.51%) and intermittently flooding conditions (11.75% ± 1.46%). The highest TPHs removal was observed in (PNC) and (NC) under IF conditions (47% ± 3.86% and 50.32% ± 7.15% after 4 months, respectively). It was concluded that nutrient addition increased TPHs removal but only under IF conditions and helped mangrove plants to deal with TPHs toxicity.展开更多
The biostimulatory effect of selected organic wastes on bacterial biodegradation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in three agricultural soils in Bauchi state, Nigeria, was carried ou...The biostimulatory effect of selected organic wastes on bacterial biodegradation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in three agricultural soils in Bauchi state, Nigeria, was carried out. The soil physico-chemical characteristics were investigated to further understand the environmental conditions of the sampling sites. Enrichment technique was used to isolate the atrazine-degrading strains. Mineralization studies were carried out to determine atrazine biodegradation potentials of strains. Polymerase Chain Reaction (PCR) amplification of total nucleic acid of strains revealed several bacterial species based on nucleotide sequence analyses. Biostimulatory effect of selected organic wastes carried out showed minimal to average extent of biodegradation. The highest mean values, in CFU/mL, increase in biomass was recorded in Pseudomonas sp for both Cow dung 16.76 (42.03%) and Chicken droppings 12.32 (38.46%). However, biostimulatory effect using consortia provided more promising results, with 41.51% and 42.08% in Cow dung and Chicken droppings, biomass increase, respectively, in studies conducted. This proves that competition, survival of inoculums, bioavailability of organic amendments and nature of chemical are important factors affecting bioremediation.展开更多
This study discusses factors affecting various processes involved in bioremediation coupled with electrokinetics. The study presents innovative solutions, and proposes new directions. Environmental conditions that hav...This study discusses factors affecting various processes involved in bioremediation coupled with electrokinetics. The study presents innovative solutions, and proposes new directions. Environmental conditions that have an influence on the characteristics, behavior, and metabolism of indigenous microorganisms are presented. The discussion focuses on overcoming the unfavorable conditions created by electrolysis reactions, prolongation the survival of the microbes at contaminated sites, increase of microbial enzyme secretion, improvement of the indigenous bacteria metabolic pathways, and exploration of metagenomics resources from soil biota. The challenge facing the implementation of conventional bioremediation techniques in precisely and effectively delivering nutrients to indigenous bacteria, particularly in soils with tortuous paths and low hydraulic conductivity is discussed. Current knowledge in application of enhanced biostimulation using electrokinetics is reviewed. The implementation of bioaugmentation in bioremediation coupled with electrokinetics to enhance the outcome of bioremediation is presented. Effects of phenomena associated with electrokinetics in the hybrid remediation approach are discussed.展开更多
Micronutrient nanoparticles(NPs)are currently an option for chemical fertilization and biostimulation in crops.However,there is little information on the phytotoxic or biostimulatory effects of NPs at low concentratio...Micronutrient nanoparticles(NPs)are currently an option for chemical fertilization and biostimulation in crops.However,there is little information on the phytotoxic or biostimulatory effects of NPs at low concentrations of some elements,such as Zn.In this study,the effect of low concentrations of Zn oxide(ZnO)NPs on germination,growth variables,and nutritional attributes of lettuce(Lactuca sativa L.)was evaluated in comparison to Zn sulfate.Romaine lettuce seeds were treated with ZnSO_(4)^(-)×7H_(2)O and ZnO NPs at Zn molar concentrations of 1×10^(−3),5×10^(−3),1×10^(−4),5×10^(−4),1×10^(−5),5×10^(−5),1×10^(−6),and 5×10^(−6).The seeds treated with ZnSO4−at 5×10^(−6)registered the highest radicle length,73%more than the control treatment.The seeds treated with ZnSO4−at 5×10^(−3)registered the lowest values,with 50%less than the control treatment.ZnO NPs at 5×10^(−6)significantly increased content of chlorophyll A and B and total phenolics.These results indicate the possible existence of a mechanism related to the intrinsic nanoparticle properties,especially at low concentrations.展开更多
基金supported by the National Natural Science Foundation of China(No.42077219)the Ningbo Municipal Natural Science Foundation(No.2019A610443)+1 种基金the Hangzhou Municipal Agriculture and Social Development Project(No.2020ZDSJ0697)the Fundamental Research Funds for the Provincial Universities of Zhejiang(No.SJLY2020011)
文摘Globally,various types of pollution affect coastal waters as a result of human activities.Bioaugmentation and biostimulation are effective methods for treating water pollution.However,few studies have explored the response of coastal prokaryotic and eukaryotic communities to bioaugmentation and biostimulation.Here,a 28-day outdoor mesocosm experiment with two treatments(bioaugmentation-A and combined treatment of bioaugmentation and biostimulation-AS)and a control(untreated-C)were carried out.The experiment was conducted in Meishan Bay to explore the composition,dynamics,and co-occurrence patterns of prokaryotic and eukaryotic communities in response to the A and AS using 16S rRNA and 18S rRNA gene amplicon sequencing.After treatment,Gammaproteobacteria and Epsilonproteobacteria were significantly increased in group AS compared to group C,while Flavobacteriia and Saprospirae were significantly reduced.Dinoflagellata was significantly reduced in AS compared to C,while Chrysophyta was significantly reduced in both AS and A.Compared to C,the principal response curve analyses of the prokaryotic and eukaryotic communities both showed an increasing trend followed by a decreasing trend for AS.Furthermore,the trends of prokaryotic and eukaryotic communities in group A were similar to those in group AS compared with group C,but AS changed them more than A did.According to the species weight table on principal response curves,a significant increase was observed in beneficial bacteria in prokaryotic communities,such as Rhodobacterales and Oceanospirillales,along with a decrease in autotrophs in eukaryotic communities,such as Chrysophyta and Diatom.Topological properties of network analysis reveal that A and AS complicate the interactions between the prokaryotic and eukaryotic communities.Overall,these findings expand our understanding of the response pattern of the bioaugmentation and biostimulation on coastal prokaryotic and eukaryotic communities.
基金Supported by the National Natural Science Foundation of China(No.41072170)the National High Technology Research and Development Program of China(No. 2007AA06A410)the Graduate Innovation Fund of Jilin University, China(No.20111037)
文摘In this study, biostimulation technology was used for bioremediation of nitrobenzene-contaminated groundwater by adding a mixture of lactose and phosphate, peptone, and beef extract. During the process of biostimulation, the remediation effectiveness, microbial dehydrogenase activities and microbial densities were investigated; the varieties of microbial community structure and composition were analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis(PCR-DGGE) technique and the relative abundances of nitrobenzene-degrading gene(nbzA) were determined by fluorescence quantitative real-time PCR(RT-PCR). Findings show that the removal rate of nitrobenzene in groundwater could reach about 60% by biostimulation with lactose and phosphate, 70% with peptone and 68% with beef extract. The microbial dehydrogenase activities and microbial densities were all improved obviously via biostimulation. The results of PCR-DGGE show that the microbial diversities were improved, and more than ten kinds of dominant microorganisms were detected after biostimulation. RT-PCR results show that the relative abundances of nbzA gene of microbes in groundwater were increased significantly, which indicated that biostimulation actually enhanced the growth of nitrobenzene-degrading bacteria. Therefore, biostimulation is a cost-effective and feasible bioremediation technique for nitrobenzene-contaminated groundwater.
文摘A bench-scale biopiling experiment was conducted to hydrocarbon bioremediation in a chronically contaminated soil compare the ability of different techniques to enhance petroleum After 195 days, 10%-32% removal of TPHs (total petroleum hydrocarbons) occurred in unamended soil (control). Biostimulation by inorganic nutrient addition enhanced TPH removal (49%) confirming that bioremediation was nutrient limited and the soil contained a well-adapted hydrocarbonoclastic microbial community. The addition of organic amendments including green waste at 25% and 50% (w/w) and a commercial product called DaramendTM had a further biostimulatory effect (50%-66%, 34%-59% and 69%-80% TPH removal respectively). Bioaugmentation using two commercially available petroleum hydrocarbon degrading microbial cultures with nutrients enhanced TPH removal in the case of RemActivTM (60%-69%), but had a marginal effect using Recycler 102 (49%-55%). The effect of a non-ionic surfactant in green waste amended soil was variable (52%-72% TPH reduction), but its potential to enhance biodegradation presumably by promoting contaminant bioavailability was demonstrated. High degradation of artificially added polycyclic aromatic hydrocarbons (PAHs) occurred after 106 days (75%-84%), but significant differences between the control and treatments were unapparent, suggesting that spiked soils do not reflect the behavior of contaminants in genuinely polluted and weathered soil.
基金supported by the International Cooperation Project of National Natural Science Foundation of China (No.40821140541)the National High Technology Research and Development Program (863) of China (No.2009AA063501)
文摘Multiple biostimulation treatments were applied to enhance the removal of heavy crude oil pollutants in the saline soil of Yellow River Delta.Changes of the soil bacterial community were monitored using the terminal restriction fragment length polymorphism (T-RFLP) and clone library analyses.The 140-day microcosm experiments showed that low C:N:P ratio,high availability of surfactant and addition of bulking agent significantly enhanced the performance,leading to the highest total petroleum hydrocarbon removal.Meanwhile,the bacterial community was remarkably changed by the multiple biostimulation treatments,with the Deltaproteobacteria,Firmicutes,Actinobacteria,Acidobacteria and Planctomycetes being inhibited and the Alphaand Beta-proteobacteria and some unknown Gammaproteobacteria bacteria being enriched.In addition,different hydrocarbon-degraders came to power in the following turn.At the first stage,the Alcanivorax-related Gammaproteobacteria bacteria dominated in the biostimulated soil and contributed mainly to the biodegradation of easily degradable portion of the heavy crude oil.Then the bacteria belonging to Alphaproteobacteria,followed by bacteria belonging to Candidate division OD1,became the dominant oil-degraders to degrade the remaining recalcitrant constituents of the heavy crude oil.
基金the GDCON group and the 2013–2014 sustainability grant of the Pro-Vice Chancellor for Research of the University of Antioquia for funding the project
文摘The bioremediation of a long-term contaminated soil through biostimulation and surfactant addition was evaluated. The concentrations of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane(DDT) and its metabolites 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane(DDD) and1,1-dichloro-2,2-bis(4-chlorophenyl) ethylene(DDE) were monitored during an 8-week remediation process. Physicochemical characterization of the treated soil was performed before and after the bioremediation process. The isolation and identification of predominant microorganisms during the remediation process were also carried out. The efficiency of detoxification was evaluated after each bioremediation protocol. Humidity and p H and the heterotrophic microorganism count were monitored weekly. The DDT concentration was reduced by 79% after 8 weeks via biostimulation with surfactant addition(B + S) and 94.3%via biostimulation alone(B). Likewise, the concentrations of the metabolites DDE and DDD were reduced to levels below the quantification limits. The microorganisms isolated during bioremediation were identified as Bacillus thuringiensis, Flavobacterium sp., Cuprivadius sp.,Variovorax soli, Phenylobacterium sp. and Lysobacter sp., among others. Analysis with scanning electron microscopy(SEM) allowed visualization of the colonization patterns of soil particles. The toxicity of the soil before and after bioremediation was evaluated using Vibrio fischeri as a bioluminescent sensor. A decrease in the toxic potential of the soil was verified by the increase of the concentration/effect relationship EC50 to 26.9% and 27.2% for B + S and B, respectively, compared to 0.4% obtained for the soil before treatment and 2.5%by natural attenuation after 8 weeks of treatment.
基金supported by the National Natural Science Foundation of China (No. 51278489)
文摘Bacillus thuringiensis/cereus L2 was added as a biostimulant to enhance the biomass accumulation and carotenoid yield of Rhodobacter sphaeroides using wastewater as the culturing medium. Results showed that biostimulation could significantly enhance the R. sphaeroides biomass production and carotenoid yield. The optimal biostimulant proportion was 40 μL(about 6.4 × 10^5CFU). Through the use of biostimulation, chemical oxygen demand removal, R. sphaeroides biomass production, carotenoid concentration, and carotenoid yield were improved by 178%, 67%, 214%, and 70%, respectively. Theoretical analysis revealed that there were two possible reasons for such increases. One was that biostimulation enhanced the R. sphaeroides wastewater treatment efficiency. The other was that biostimulation significantly decreased the peroxidase activity in R. sphaeroides. The results showed that the highest peroxidase activity dropped by 87% and the induction ratio of the RSP_3419 gene was 3.1 with the addition of biostimulant. The enhanced carotenoid yield in R. sphaeroides could thus be explained by a decrease in peroxidase activity.
文摘BACKGROUND Pelvic floor dysfunction(PFD)is related to muscle fiber tearing during childbirth,negatively impacting postpartum quality of life of parturient.Appropriate and effective intervention is necessary to promote PFD recovery.AIM To analyze the use of hydrogen peroxide and silver ion disinfection for vaginal electrodes in conjunction with comprehensive rehabilitation therapy for postpartum women with PFD.METHODS A total of 59 women with PFD who were admitted to the hospital from May 2019 to July 2022 were divided into two groups:Control group(n=27)received comprehensive rehabilitation therapy and observation group(n=32)received intervention with pelvic floor biostimulation feedback instrument in addition to comprehensive rehabilitation therapy.The vaginal electrodes were disinfected with hydrogen peroxide and silver ion before treatment.Intervention for both groups was started 6 weeks postpartum,and rehabilitation lasted for 3 months.Pelvic floor muscle voltage,pelvic floor muscle strength,vaginal muscle voltage,vaginal muscle tone,pelvic floor function,quality of life,and incidence of postpartum PFD were compared between the two groups.RESULTS Before comprehensive rehabilitation treatment,basic data and pelvic floor function were not significantly different between the two groups.After treatment,the observation group showed significant improvements in the maximum voltage and average voltage of pelvic floor muscles,contraction time of type I and type II fibers,pelvic floor muscle strength,vaginal muscle tone,vaginal muscle voltage,and quality of life(GQOLI-74 reports),compared with the control group.The observation group had lower scores on the pelvic floor distress inventory(PFDI-20)and a lower incidence of postpartum PFD,indicating the effectiveness of the pelvic floor biostimulation feedback instrument in promoting the recovery of maternal pelvic floor function.CONCLUSION The combination of the pelvic floor biostimulation feedback instrument and comprehensive rehabilitation nursing can improve pelvic floor muscle strength,promote the recovery of vaginal muscle tone,and improve pelvic floor function and quality of life.The use of hydrogen peroxide and silver ion disinfectant demonstrated favorable antibacterial efficacy and is worthy of clinical application.
文摘Soil contamination by hydrocarbons poses numerous environmental, health and agricultural problems. The degradation of these pollutants can occur naturally but very slowly. It is therefore generally necessary to stimulate this degradation by different means. Thus, this study aimed to improve the bio-degradation of diesel and crude oil in a Ghanaian soil by biostimulation. For this, the sampled soil was characterized by standard methods and contaminated with diesel and crude oil at a proportion of 1% (w/w). Then, contaminated soil samples were supplemented with biochar-compost, poultry manure or cow dung at the proportion of 10% (w/w). Periodically, fractions of these samples were taken to evaluate the density of hydrocarbon utilizing bacteria (HUB) and the residual quantities of diesel or crude oil. The characteristics of the soil used show the need for supplementation for better degradation of hydrocarbons. The results of the study show that supplementing the soil with organic substrates increases HUB loads in soils contaminated by diesel and crude oil. They also show that the residual quantities of diesel and crude oil are generally significantly lower in supplemented soils (p = 0.048 and p < 0.0001 respectively). In addition, the study shows that degradation was generally greater in soils contaminated by diesel compared to those contaminated by crude oil, especially at the end of the study.
基金supported by the grants from National Natural Science Foundation of China(Grant Nos.32172598,32172599)Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(Grant No.320LH013)+1 种基金the Construction of Beijing Science and Technology Innovation and Service Capacity in Top Subjects(Grant No.CEFF-PXM2019-014207-000032)Beijing Agriculture Innovation Consortium(Grant No.BAIC01-2024).
文摘Melatonin is a conserved pleiotropic molecule in animals and plants.Melatonin is involved in many development processes and stress responses;thus,exploring its function in plants,particularly in horticultural plants,has become a rapidly developing field.Many studies have revealed that phytomelatonin acts as a plant biostimulant and increase its tolerance to various abiotic stressors,including extreme temperature,drought,osmotic disturbance,heavy metals,and ultraviolet(UV).Melatonin appears to have roles in the scavenging of reactive oxygen species(ROS)and other free radicals,affecting the primary and secondary metabolism of plants,regulating the transcripts of stress-related enzymes and transcription factors,and crosstalk with other hormones under different environmental conditions.This pleiotropy makes phytomelatonin an attractive regulator to improve resistance to abiotic stress in plants.The recent discovery of the potential phytomelatonin receptor CAND2/PMTR1 and the proposition of putative models related to the phytomelatonin signaling pathways makes phytomelatonin a new plant hormone.Based on relevant studies from our laboratory,this review summarizes the phytomelatonin biosynthetic and metabolic pathways in plants and the latest research progress on phytomelatonin in abiotic stress of horticultural plants.This study will provide a reference for elucidating the regulatory mechanism of phytomelatonin affecting the resistance to abiotic stress in plants.
基金This paper was supported by Universiti Putra Malaysia,Innohub Grant Scheme(Vote No.9005004)D’Khairan Farm Sdn Bhd(Vote No.6300349).
文摘Drought stress is a major factor affecting plant growth and crop yield production.Plant extracts as natural biostimulants hold great potential to strengthen plants to overcome drought impacts.To explore the effect of Polygonum minus extract(PME)in enhancing drought tolerance in plants,a study was set up in a glasshouse environment using 10 different treatment combinations.PME foliar application were designed in CRD and effects were closely observed related to the growth,physiology,and antioxidant system changes in maize(Zea mays L.)under well-watered and drought conditions.The seaweed extract(SWE)was used as a comparison.Plants subjected to drought stress exhibited a significant reduction in fresh weight,dry weight,relative water content(RWC),and soluble sugar,but they stimulated the phenolic,flavonoid,proline,glutathione(GSH),malondialdehyde(MDA)and antioxidant enzyme(catalase,CAT;peroxidase,POD;superoxide dismutase,SOD)activities.Foliar application of PME improved fresh and dry weight(FW:33.1%~41.4%;DW:48.0%~43.1%),chlorophyll content(Chl b:87.9%~100.76%),soluble sugar(23.6%~49.3%),and soluble protein(48.6%~56.9%)as well as antioxidant enzyme activities(CAT and POD)compared to CK under drought conditions.while decreasing the level of MDA.Notably,the mitigating effect of PME application with high concentration was more effective than those of SWE.Our study reveals that PME could alleviate drought stress by regulating osmoprotectant content and antioxidant defense system and can be used as an economical and environmentally friendly biostimulants for promoting maize growth under drought stress.
基金Researchers Supporting Project Number(RSP2024R7)King Saud University,Riyadh,Saudi Arabia.
文摘Nutrient management plays a crucial role in the yield and quality of sweet corn.A field experiment was conducted in consecutive two kharif seasons in 2018 and 2019 to investigate the effect of various organic sources of nutrients in combination with inorganic sources on the yield and quality of sweet corn under new alluvial soils of West Bengal,India.Treatments were:T_(1):Control(without fertilizers);T_(2):100%recommended dose(RDF)of chemical fertilizers(CF)(RDF CF_(100%));T_(3):100%recommended dose of N(RDN)through vermicompost(VC)(RDN VC_(100%));T_(4):50 RDN through CF+50%RDN through VC(RDN CF_(50%)+RDN VC50%);T_(5):50%RDF through CF+50%RDN through organic source(OS)1,Soligro(Ascophyllum nodosum)granular(RDN CF_(50%)+RDN OS_(150%));T6:50%RDN through CF+50%RDN through OS 2,Bioenzyme(liquid)(RDN CF_(50%)+RDN OS250%);T7:50%RDN through CF+50%RDN through OS 3,Opteine(Ascophyllum nodosum)filtrate[RDN CF_(50%)+RDN OS350%];T8:50%RDN through VC+50%RDF through OS 1,Soligro(Ascophyllum nodosum)granular(RDN VC50%+RDN OS_(150%)).The OS of fertilizers were VC,SoliGro Gr(OS1)(Ascophyllum nodosum),Bioenzyme liquid(OS2),and Opteine(Ascophyllum nodosum)filtrate(OS3).The inorganic source was traditional CF applied at the RDF(150:75:75 kg ha^(−1) of N:P2O5:K2O).The VC was used to supply 100%RDN as one source or 50%RDN when combined with CF or OS.Maximum fruit yield(10.75 and 10.79 t ha^(−1) in 2018 and 2019,respectively)was recorded when RDF was substituted through CF only,being statistically at par with 50%CF+50%VC on a nitrogen equivalent basis(9.92 and 10.00 t ha^(−1) in 2018 and 2019,respectively)and 100%VC(8.22 and 8.32 t ha^(−1) in 2018 and 2019,respectively).Compared to chemical sources of nutrients,VC-based treatments produced a larger percentage of large-size cob(>25 cm).The 100%VC increased antioxidant(8.35 and 8.45 mg g^(−1)),carotenoid(0.59 and 0.61 mg/100 g),and phenol(55.06 and 55.02 mg 100 g^(−1))content compared with its 50%dose in combination with other sources.The study revealed the potentiality of organic sources towards achieving improved cob quality of sweet corn.
基金through Project A-1-S-20923 and Grant No.725753 from S.C.Ramírez Rodríguez.
文摘Biodegradable nanoparticles such as chitosan nanoparticles (CSNPs) are used in sustainable agriculture since theyavoid damage to the environment;CSNPs have positive effects such as the accumulation of bioactive compoundsand increased productivity in plants. This study aimed to investigate the impact of applying CSNPs on lettuce,specifically focusing on enzymatic activity, bioactive compounds, and yield. The trial was conducted using a completelyrandomized design, incorporating CSNPs: 0, 0.05, 0.1, 0.2, 0.4, and 0.8 mg mL−1. The doses of 0.4 mg mL−1improve yields up to 24.6% increases and 0.1 mg mL−1 of CSNPs increases total phenols by 31.2% and antioxidantcapacity by 34.6%. In addition, when low concentrations of CSNPs (0.05 and 0.1 mg L−1) were applied, anincrease in catalase was determined. The CSNPs represent a good alternative to be used as a biostimulant in sustainableagriculture because they improve the yield and quality of lettuce by increasing the bioactive compounds.
基金the National Natural Science Foundation of China(No.32001984).
文摘A Plant Biostimulant is any substance or microorganism applied to plants to enhance nutrition efficiency,abioticstress tolerance,and/or crop quality traits,regardless of its nutrient content.The application of Plant biostimulants(PBs)in production can reduce the application of traditional pesticides and chemical fertilizers and improvethe quality and yield of crops,which is conducive to the sustainable development of agriculture.An in-depthunderstanding of the mechanism and effect of various PBs is very important for how to apply PBs reasonablyand effectively in the practice of crop production.This paper summarizes the main classification of PBs;Thegrowth promotion mechanism of PBs was analyzed from four aspects:improving soil physical and chemical properties,enhancing crop nutrient absorption capacity,photosynthesis capacity,and abiotic stress tolerance;At thesame time,the effects of PBs application on seed germination,seedling vigor,crop yield,and quality were summarized;Finally,how to continue to explore and study the use and mechanism of PBs in the future is analyzedand prospected,to better guide the application of PBs in crop production in the future.
文摘The process of rice(Oryza sativa L.)seedling cultivation is often subjected to adverse environmental stress.Biostimulants regulate the robust growth of rice seedlings and play a crucial role in promoting the green and ecological development of agriculture.In this study,1.0 and 2.0 g•m^(-2) of the biostimulant were applied to soil in rice seedbeds.Growth indicators of rice,antioxidant enzyme activities and soil physicochemical characteristics were assessed at the 2.5-leaf and 4-leaf stages of rice.The results indicated that applying 2.0 g•m^(-2) of the biostimulant at both the 2.5-leaf and 4-leaf stages had the most significant promoting effect on rice growth.At the 2.5-leaf and 4-leaf stages,the number of fibrous roots increased by 23.43%and 22.25%,stem base width increased by 19.05%and 19.58%,above ground dry weight increased by 18.09%and 16.47%,root dry weight increased by 19.67%and 18.28%,leaf peroxidase(POD)activity increased by 34.44%and 42.94%,superoxide dismutase(SOD)activity increased by 37.24%and 56.79%,malondialdehyde(MDA)content decreased by 18.60%and 27.67%,and chlorophyll content increased significantly by 28.31%and 34.24%,respectively.At the 4-leaf stage of rice,urease,phosphatase and cellulase activities in the seedbed soil increased by 42.13%,25.96%and 33.59%,respectively,while soil alkaline nitrogen,available phosphorus and available potassium content decreased by 19.76%,19.02%and 17.88%,respectively.The application of biostimulants played a crucial role in promoting the growth of rice seedlings and enhancing soil nutrient absorption.
文摘Beans (Phaseolus vulgaris L.) are widely grown in Cameroon and play a key role in the fight against food insecurity, malnutrition and poverty. However, its cultivation encounters problems due to abiotic and biotic stresses, which leads to the use of synthetic fertilizers and pesticides, which cause significant damage to the environment and human health due to the presence of synthetics residues in the seeds, pods and in the leaves that are eaten. Promoting the use of natural products is becoming a necessity for organic and eco-responsible agriculture that limits contamination problems and improves people’s purchasing power. This study aims to assess the effect of biostimulants based on natural products on the growth and nutritional value of common bean (Phaseolus vulgaris L.). Bean seedlings from white variety (MEX-142) and red variety (DOR-701) were treated every seven days in the field from their pre-emergence, emergence and growth to their maturation under a randomized block experimental design. Six treatments and three repetitions with the biostimulants based on natural products and controls were thus performed and the agromorphological parameters were measured. After 120 days, the contents of growth biomarkers and defense-related enzymes were evaluated in leaves, while the contents of macromolecules, minerals and antinutrients were evaluated in seeds. These biostimulants significantly increased (P P < 0.0001) of antinutrients including oxalates, phytates, tannins and saponins in seeds compared to controls (T+ and T−). Treatment with biostimulants, in particular BS4, improves the performance of bean plants in the field as well as the biofortification of seeds regardless of the variety.
基金supported by the Competitive Research Grant of the University of KwaZulu-Natal, Durbanthe National Research Foundation of South Africa.
文摘1,2-Dichloroethane (DCA), a potential mutagen and carcinogen, is commonly introduced into the environment through its industrial and agricultural use. In this study, the impact of lead and mercury on DCA degradation in soil was investigated, owing to the complex co-contamination problem frequently encountered in most sites. 1,2-Dichloroethane was degraded readily in both contaminated loam and clay soils with the degradation rate constants ranging between 0.370-0.536 week-1 and 0.309-0.417 week-1, respectively. The presence of heavy metals have a negative impact on DCA degradation in both soil types, resulting in up to 24.11% reduction in DCA degradation within one week. Both biostimulation and treatment additives increased DCA degradation, with the best degradation observed upon addition of glucose and a combination of diphosphate salt and sodium chloride, leading to about 17.91% and 43.50% increase in DCA degradation, respectively. The results have promising potential for effective remediation of soils co-contaminated with chlorinated organics and heavy metals. However, the best bioremediation strategy will depend on the soil types, microbial population present in the soil matrices, nutrients availability and metal forms.
文摘The addition of nutrients to accelerate biodegradation of oil is an adequate strategy to clean up polluted mangrove soils which pollutes mangrove soils. However, the hydrology of these ecosystems might interfere with such strategy. The effect of flooding frequency and nutrient addition on hydrocarbon removal in mangrove sediments was investigated in this study. Microcosms consisted of pots with 5 kg of fresh mangrove sediments and one seedling of Avicennia germinans. Treatments included: planted microcosms with fertilizer and crude oil (PNC), planted microcosms with oil (PC), non-planted microcosms with oil and fertilizer (NC), planted microcosms with fertilizer (PN) and planted microcosms without oil or fertilizer (P). Mexican Maya crude oil and inorganic nutrients were added in a single dose of approximately 5.0 g DW·kg-1, 0.33 g of N DW·kg-1 and 0.06 g P DW·kg-1. Microcosms were either permanently flooded (PF) or intermittently flooded (IF: 14 hours drained and 10 hours flooded), and kept in a glasshouse in Xalapa, Veracruz, Mexico. In both flooding conditions, oil decreased the relative growth rate of A. germinans by 56% in (PC) treatments and 40% in (PNC) treatments. Redox potential in the oiled treatments (-44.73 to +75.34 mV) was lower than non-oiled treatments (-1.31 to +163.43 mV). Total Petroleum Hydrocarbons (TPHs) removal in PC treatments was low in both permanent (2.99% ± 3.51%) and intermittently flooding conditions (11.75% ± 1.46%). The highest TPHs removal was observed in (PNC) and (NC) under IF conditions (47% ± 3.86% and 50.32% ± 7.15% after 4 months, respectively). It was concluded that nutrient addition increased TPHs removal but only under IF conditions and helped mangrove plants to deal with TPHs toxicity.
文摘The biostimulatory effect of selected organic wastes on bacterial biodegradation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in three agricultural soils in Bauchi state, Nigeria, was carried out. The soil physico-chemical characteristics were investigated to further understand the environmental conditions of the sampling sites. Enrichment technique was used to isolate the atrazine-degrading strains. Mineralization studies were carried out to determine atrazine biodegradation potentials of strains. Polymerase Chain Reaction (PCR) amplification of total nucleic acid of strains revealed several bacterial species based on nucleotide sequence analyses. Biostimulatory effect of selected organic wastes carried out showed minimal to average extent of biodegradation. The highest mean values, in CFU/mL, increase in biomass was recorded in Pseudomonas sp for both Cow dung 16.76 (42.03%) and Chicken droppings 12.32 (38.46%). However, biostimulatory effect using consortia provided more promising results, with 41.51% and 42.08% in Cow dung and Chicken droppings, biomass increase, respectively, in studies conducted. This proves that competition, survival of inoculums, bioavailability of organic amendments and nature of chemical are important factors affecting bioremediation.
文摘This study discusses factors affecting various processes involved in bioremediation coupled with electrokinetics. The study presents innovative solutions, and proposes new directions. Environmental conditions that have an influence on the characteristics, behavior, and metabolism of indigenous microorganisms are presented. The discussion focuses on overcoming the unfavorable conditions created by electrolysis reactions, prolongation the survival of the microbes at contaminated sites, increase of microbial enzyme secretion, improvement of the indigenous bacteria metabolic pathways, and exploration of metagenomics resources from soil biota. The challenge facing the implementation of conventional bioremediation techniques in precisely and effectively delivering nutrients to indigenous bacteria, particularly in soils with tortuous paths and low hydraulic conductivity is discussed. Current knowledge in application of enhanced biostimulation using electrokinetics is reviewed. The implementation of bioaugmentation in bioremediation coupled with electrokinetics to enhance the outcome of bioremediation is presented. Effects of phenomena associated with electrokinetics in the hybrid remediation approach are discussed.
文摘Micronutrient nanoparticles(NPs)are currently an option for chemical fertilization and biostimulation in crops.However,there is little information on the phytotoxic or biostimulatory effects of NPs at low concentrations of some elements,such as Zn.In this study,the effect of low concentrations of Zn oxide(ZnO)NPs on germination,growth variables,and nutritional attributes of lettuce(Lactuca sativa L.)was evaluated in comparison to Zn sulfate.Romaine lettuce seeds were treated with ZnSO_(4)^(-)×7H_(2)O and ZnO NPs at Zn molar concentrations of 1×10^(−3),5×10^(−3),1×10^(−4),5×10^(−4),1×10^(−5),5×10^(−5),1×10^(−6),and 5×10^(−6).The seeds treated with ZnSO4−at 5×10^(−6)registered the highest radicle length,73%more than the control treatment.The seeds treated with ZnSO4−at 5×10^(−3)registered the lowest values,with 50%less than the control treatment.ZnO NPs at 5×10^(−6)significantly increased content of chlorophyll A and B and total phenolics.These results indicate the possible existence of a mechanism related to the intrinsic nanoparticle properties,especially at low concentrations.