In this article, generalized Birkhoff equations are put forward by adding supplementary terms to the Birkhoff equations. A conformal invariance of the Birkhoff equations can be used to study the generalized Birkhoff E...In this article, generalized Birkhoff equations are put forward by adding supplementary terms to the Birkhoff equations. A conformal invariance of the Birkhoff equations can be used to study the generalized Birkhoff Equations, and two examples are presented to illustrate the application of the results.展开更多
The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is nece...The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is necessary to extend the classical theories and methods of analytical mechanics to the fractional dynamic system.Birkhoffian mechanics is a natural generalization of Hamiltonian mechanics,and its core is the Pfaff-Birkhoff principle and Birkhoff′s equations.The study on the Birkhoffian mechanics is an important developmental direction of modern analytical mechanics.Here,the fractional Pfaff-Birkhoff variational problem is presented and studied.The definitions of fractional derivatives,the formulae for integration by parts and some other preliminaries are firstly given.Secondly,the fractional Pfaff-Birkhoff principle and the fractional Birkhoff′s equations in terms of RieszRiemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives are presented respectively.Finally,an example is given to illustrate the application of the results.展开更多
This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a n...This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral.展开更多
The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations wit...The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.展开更多
The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessar...The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.展开更多
In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structure...In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structures of Birkhoffian systems. A numerical experiment for a damping oscillator system is conducted. The result shows that the new algorithm can better simulate the energy dissipation than the R-K method, which illustrates that we can numerically solve the dynamical equations by the discrete variational method in a Birkhoffian framework for the systems with a general symplectic structure. Furthermore, it is demonstrated that the results of the numerical experiments are determined not by the constructing methods of Birkhoffian functions but by whether the numerical method can preserve the inherent nature of the dynamical system.展开更多
This paper focuses on studying the generalized geometry theory of constrained rotating relativistic Birkhoffian systems. Based on the fact that relativistic rotating inertia is embedded in the Birkhoffian systems, the...This paper focuses on studying the generalized geometry theory of constrained rotating relativistic Birkhoffian systems. Based on the fact that relativistic rotating inertia is embedded in the Birkhoffian systems, the Pfaff action of rotating relativistic Birkhoffian systems was defined. The Pfaff-Birkhoff principles and Birkhoff's equations of the constrained rotating relativistic systems were obtained. The geometrical description, the exact properties and their forms on R T^*M for the constrained rotating relativistic Birkhoffian systems are given. The global analyses of the autonomous, semi-autonomous and non-autonomous constrained relativistic Birkhoff's equations as well as the geometrical properties of energy change for the constrained rotating relativistic Birkhoffian systems were also conducted.展开更多
Chaplygin’s nonholonomic systems are familiar mechanical systems subject to unintegrable linear constraints, which can be reduced into holonomic nonconservative systems in a subspace of the original state space. The ...Chaplygin’s nonholonomic systems are familiar mechanical systems subject to unintegrable linear constraints, which can be reduced into holonomic nonconservative systems in a subspace of the original state space. The inverse problem of the calculus of variations or Lagrangian inverse problem for such systems is analyzed by making use of a reduction of the systems into new ones with time reparametrization symmetry and a genotopic transformation related with a conformal transformation. It is evident that the Lagrangian inverse problem does not have a direct universality. By meaning of a reduction of Chaplygin’s nonholonomic systems into holonomic, regular, analytic, nonconservative, first-order systems, the systems admit a Birkhoffian representation in a star-shaped neighborhood of a regular point of their variables, which is universal due to the Cauchy-Kovalevski theorem and the converse of the Poincaré lemma.展开更多
基金the National Natural Science Foundation of China(10572021 and 10772025)the Doctoral Program Foundation of Institution of Higher Education,China(20040007022)
文摘In this article, generalized Birkhoff equations are put forward by adding supplementary terms to the Birkhoff equations. A conformal invariance of the Birkhoff equations can be used to study the generalized Birkhoff Equations, and two examples are presented to illustrate the application of the results.
基金Supported by the National Natural Science Foundation of China(10972151,11272227)the Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province(CXZZ11_0949)the Innovation Program for Postgraduate of Suzhou University of Science and Technology(SKCX11S_050)
文摘The dynamical and physical behavior of a complex system can be more accurately described by using the fractional model.With the successful use of fractional calculus in many areas of science and engineering,it is necessary to extend the classical theories and methods of analytical mechanics to the fractional dynamic system.Birkhoffian mechanics is a natural generalization of Hamiltonian mechanics,and its core is the Pfaff-Birkhoff principle and Birkhoff′s equations.The study on the Birkhoffian mechanics is an important developmental direction of modern analytical mechanics.Here,the fractional Pfaff-Birkhoff variational problem is presented and studied.The definitions of fractional derivatives,the formulae for integration by parts and some other preliminaries are firstly given.Secondly,the fractional Pfaff-Birkhoff principle and the fractional Birkhoff′s equations in terms of RieszRiemann-Liouville fractional derivatives and Riesz-Caputo fractional derivatives are presented respectively.Finally,an example is given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China (Grant Nos 10572021 and 10772025)
文摘This paper presents a Poisson theory of the generalized Birkhoff equations, including the algebraic structure of the equations, the sufficient and necessary condition on the integral and the conditions under which a new integral can be deduced by a known integral as well as the form of the new integral.
基金National Natural Science Foundations of China(Nos.11572212,11272227,10972151)the Innovation Program for Scientific Research of Nanjing University of Science and Technology,Chinathe Innovation Program for Postgraduate in Higher Education Institutions of Jiangsu Province,China(No.KYLX15_0405)
文摘The fractional Pfaffian variational problem and Noether’s theorems were investigated in terms of Riemann-Liouville derivatives on the basis of El-Nabulsi fractional model.The problem of the calculus of variations with fractional derivatives is a hot topic recently.Firstly,within Riemann-Liouville derivatives,the ElNabulsi Pfaffian variational problem was presented,the fractional Pfaff-Birkhoff-d’Alembert principle was established,and the fractional Birkhoff equations and the corresponding transversality conditions were obtained.Then,the Noether’s theorems in terms of Riemann-Liouville derivatives for the Birkhoffian system on the basis of El-Nabulsi fractional model are investigated under the special and the general transformations respectively.Finally,an example is given to illustrate the methods and results appeared in this paper.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10932002,11172120,and 11202090)
文摘The problem of transforming autonomous systems into Birkhoffian systems is studied. A reasonable form of linear autonomous Birkhoff equations is given. By combining them with the undetermined tensor method, a necessary and sufficient condition for an autonomous system to have a representation in terms of linear autonomous Birkhoff equations is obtained. The methods of constructing Birkhoffian dynamical functions are given. Two examples are given to illustrate the application of the results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11301350,11172120,and 11202090)the Liaoning University Prereporting Fund Natural Projects(Grant No.2013LDGY02)
文摘In this paper, we present a new integration algorithm based on the discrete Pfaff-Birkhoff principle for Birkhoffian systems. It is proved that the new algorithm can preserve the general symplectic geometric structures of Birkhoffian systems. A numerical experiment for a damping oscillator system is conducted. The result shows that the new algorithm can better simulate the energy dissipation than the R-K method, which illustrates that we can numerically solve the dynamical equations by the discrete variational method in a Birkhoffian framework for the systems with a general symplectic structure. Furthermore, it is demonstrated that the results of the numerical experiments are determined not by the constructing methods of Birkhoffian functions but by whether the numerical method can preserve the inherent nature of the dynamical system.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10672143, 10372053), and the Natural Science Foundation of Henan Province (Grant Nos.03011011400, 05011022200)
文摘This paper focuses on studying the generalized geometry theory of constrained rotating relativistic Birkhoffian systems. Based on the fact that relativistic rotating inertia is embedded in the Birkhoffian systems, the Pfaff action of rotating relativistic Birkhoffian systems was defined. The Pfaff-Birkhoff principles and Birkhoff's equations of the constrained rotating relativistic systems were obtained. The geometrical description, the exact properties and their forms on R T^*M for the constrained rotating relativistic Birkhoffian systems are given. The global analyses of the autonomous, semi-autonomous and non-autonomous constrained relativistic Birkhoff's equations as well as the geometrical properties of energy change for the constrained rotating relativistic Birkhoffian systems were also conducted.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10932002, 10872084, and 10472040)the Outstanding Young Talents Training Fund of Liaoning Province of China (Grant No. 3040005)+2 种基金the Research Program of Higher Education of Liaoning Prov- ince, China (Grant No. 2008S098)the Program of Supporting Elitists of Higher Education of Liaoning Province, China (Grant No. 2008RC20)the Program of Constructing Liaoning Provincial Key Laboratory, China (Grant No. 2008403009)
文摘Chaplygin’s nonholonomic systems are familiar mechanical systems subject to unintegrable linear constraints, which can be reduced into holonomic nonconservative systems in a subspace of the original state space. The inverse problem of the calculus of variations or Lagrangian inverse problem for such systems is analyzed by making use of a reduction of the systems into new ones with time reparametrization symmetry and a genotopic transformation related with a conformal transformation. It is evident that the Lagrangian inverse problem does not have a direct universality. By meaning of a reduction of Chaplygin’s nonholonomic systems into holonomic, regular, analytic, nonconservative, first-order systems, the systems admit a Birkhoffian representation in a star-shaped neighborhood of a regular point of their variables, which is universal due to the Cauchy-Kovalevski theorem and the converse of the Poincaré lemma.