Traditionally, brachial plexus damage was attributed to excessive traction applied on the fetal head at delivery. Recently, it was proposed that most injuries occur spontaneously in utero. The author has studied the m...Traditionally, brachial plexus damage was attributed to excessive traction applied on the fetal head at delivery. Recently, it was proposed that most injuries occur spontaneously in utero. The author has studied the mechanism of neurological birth injuries based on 338 actual cases with special attention to(1) fetal macrosomia;(2) maternal diabetes; and(3) methods of delivery. There was a high coincidence between use of traction and brachial plexus injuries. Instrumental extractions increased the risk exponentially. Erb's palsy following cesarean section was exceedingly rare. These facts imply that spontaneous neurological injury in utero is extremely rare phenomenon. Literary reports show that shoulder dystocia and its associated injuries increased in the United States several-fold since the introduction of active management of delivery in the 1970's. Such a dramatic change in a stable population is unlikely to be caused by incidental spontaneous events unrelated to external factors. The cited investigations indicate that brachial plexus damage typically is traction related. The traditional technique which precludes traction is the optimal method for avoiding arrest of the shoulders and its associated neurological birth injuries. Effective prevention also requires meticulous prenatal care and elective abdominal delivery of macrosomic fetuses in carefully selected cases.展开更多
Emerging evidence is fueling a new appreciation of oligodendrocyte diversity that is overturning the traditional view that oligodendrocytes are a homogenous cell population.Oligodendrocytes of distinct origins,maturat...Emerging evidence is fueling a new appreciation of oligodendrocyte diversity that is overturning the traditional view that oligodendrocytes are a homogenous cell population.Oligodendrocytes of distinct origins,maturational stages,and regional locations may differ in their functional capacity or susceptibility to injury.One of the most unique qualities of the oligodendrocyte is its ability to produce myelin.Myelin abnormalities have been ascribed to a remarkable array of perinatal brain injuries,with concomitant oligodendrocyte dysregulation.Within this review,we discuss new insights into the diversity of the oligodendrocyte lineage and highlight their relevance in paradigms of perinatal brain injury.Future therapeutic development will be informed by comprehensive knowledge of oligodendrocyte pathophysiology that considers the particular facets of heterogeneity that this lineage exhibits.展开更多
Clinically,peripheral nerve reconstructions in neonates are most frequently applied in brachial plexus birth injuries.Most surgical concepts,however,have investigated nerve reconstructions in adult animal models.The i...Clinically,peripheral nerve reconstructions in neonates are most frequently applied in brachial plexus birth injuries.Most surgical concepts,however,have investigated nerve reconstructions in adult animal models.The immature neuromuscular system reacts differently to the effects of nerve lesion and surgery and is poorly investigated due to the lack of reliable experimental models.Here,we describe an experimental forelimb model in the neonatal rat,to study these effects on both the peripheral and central nervous systems.Within 24 hours after birth,three groups were prepared:In the nerve transfer group,a lesion of the musculocutaneous nerve was reconstructed by selectively transferring the ulnar nerve.In the negative control group,the musculocutaneous nerve was divided and not reconstructed and in the positive control group,a sham surgery was performed.The animal's ability to adapt to nerve lesions and progressive improvement over time were depict by the Bertelli test,which observes the development of grooming.Twelve weeks postoperatively,animals were fully matured and the nerve transfer successfully reinnervated their target muscles,which was indicated by muscle force,muscle weight,and cross sectional area evaluation.On the contrary,no spontaneous regeneration was found in the negative control group.In the positive control group,reference values were established.Retrograde labeling indicated that the motoneuron pool of the ulnar nerve was reduced following nerve transfer.Due to this post-axotomy motoneuron death,a diminished amount of motoneurons reinnervated the biceps muscle in the nerve transfer group,when compared to the native motoneuron pool of the musculocutaneous nerve.These findings indicate that the immature neuromuscular system behaves profoundly different than similar lesions in adult rats and explains reduced muscle force.Ultimately,pathophysiologic adaptations are inevitable.The maturing neuromuscular system,however,utilizes neonatal capacity of regeneration and seizes a variety of compensation mechanism to restore a functional extremity.The above described neonatal rat model demonstrates a constant anatomy,suitable for nerve transfers and allows all standard neuromuscular analyses.Hence,detailed investigations on the pathophysiological changes and subsequent effects of trauma on the various levels within the neuromuscular system as well as neural reorganization of the neonatal rat may be elucidated.This study was approved by the Ethics Committee of the Medical University of Vienna and the Austrian Ministry for Research and Science(BMWF-66.009/0187-WF/V/3 b/2015)on March 20,2015.展开更多
文摘Traditionally, brachial plexus damage was attributed to excessive traction applied on the fetal head at delivery. Recently, it was proposed that most injuries occur spontaneously in utero. The author has studied the mechanism of neurological birth injuries based on 338 actual cases with special attention to(1) fetal macrosomia;(2) maternal diabetes; and(3) methods of delivery. There was a high coincidence between use of traction and brachial plexus injuries. Instrumental extractions increased the risk exponentially. Erb's palsy following cesarean section was exceedingly rare. These facts imply that spontaneous neurological injury in utero is extremely rare phenomenon. Literary reports show that shoulder dystocia and its associated injuries increased in the United States several-fold since the introduction of active management of delivery in the 1970's. Such a dramatic change in a stable population is unlikely to be caused by incidental spontaneous events unrelated to external factors. The cited investigations indicate that brachial plexus damage typically is traction related. The traditional technique which precludes traction is the optimal method for avoiding arrest of the shoulders and its associated neurological birth injuries. Effective prevention also requires meticulous prenatal care and elective abdominal delivery of macrosomic fetuses in carefully selected cases.
文摘Emerging evidence is fueling a new appreciation of oligodendrocyte diversity that is overturning the traditional view that oligodendrocytes are a homogenous cell population.Oligodendrocytes of distinct origins,maturational stages,and regional locations may differ in their functional capacity or susceptibility to injury.One of the most unique qualities of the oligodendrocyte is its ability to produce myelin.Myelin abnormalities have been ascribed to a remarkable array of perinatal brain injuries,with concomitant oligodendrocyte dysregulation.Within this review,we discuss new insights into the diversity of the oligodendrocyte lineage and highlight their relevance in paradigms of perinatal brain injury.Future therapeutic development will be informed by comprehensive knowledge of oligodendrocyte pathophysiology that considers the particular facets of heterogeneity that this lineage exhibits.
基金supported by the Christian Doppler Research Association and the European Research Council under the European Union’s Horizon 2020 research and innovation program(both to OCA)。
文摘Clinically,peripheral nerve reconstructions in neonates are most frequently applied in brachial plexus birth injuries.Most surgical concepts,however,have investigated nerve reconstructions in adult animal models.The immature neuromuscular system reacts differently to the effects of nerve lesion and surgery and is poorly investigated due to the lack of reliable experimental models.Here,we describe an experimental forelimb model in the neonatal rat,to study these effects on both the peripheral and central nervous systems.Within 24 hours after birth,three groups were prepared:In the nerve transfer group,a lesion of the musculocutaneous nerve was reconstructed by selectively transferring the ulnar nerve.In the negative control group,the musculocutaneous nerve was divided and not reconstructed and in the positive control group,a sham surgery was performed.The animal's ability to adapt to nerve lesions and progressive improvement over time were depict by the Bertelli test,which observes the development of grooming.Twelve weeks postoperatively,animals were fully matured and the nerve transfer successfully reinnervated their target muscles,which was indicated by muscle force,muscle weight,and cross sectional area evaluation.On the contrary,no spontaneous regeneration was found in the negative control group.In the positive control group,reference values were established.Retrograde labeling indicated that the motoneuron pool of the ulnar nerve was reduced following nerve transfer.Due to this post-axotomy motoneuron death,a diminished amount of motoneurons reinnervated the biceps muscle in the nerve transfer group,when compared to the native motoneuron pool of the musculocutaneous nerve.These findings indicate that the immature neuromuscular system behaves profoundly different than similar lesions in adult rats and explains reduced muscle force.Ultimately,pathophysiologic adaptations are inevitable.The maturing neuromuscular system,however,utilizes neonatal capacity of regeneration and seizes a variety of compensation mechanism to restore a functional extremity.The above described neonatal rat model demonstrates a constant anatomy,suitable for nerve transfers and allows all standard neuromuscular analyses.Hence,detailed investigations on the pathophysiological changes and subsequent effects of trauma on the various levels within the neuromuscular system as well as neural reorganization of the neonatal rat may be elucidated.This study was approved by the Ethics Committee of the Medical University of Vienna and the Austrian Ministry for Research and Science(BMWF-66.009/0187-WF/V/3 b/2015)on March 20,2015.