Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In...Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In this study,a novel cathelicidin peptide(Cath-KP;GCSGRFCNLF NNRRPGRLTLIHRPGGDKRTSTGLIYV)was identified from the skin of the Asiatic painted frog(Kaloula pulchra).Structural analysis using circular dichroism and homology modeling revealed a uniqueαββconformation for Cath-KP.In vitro experiments,including free radical scavenging and ferric-reducing antioxidant analyses,confirmed its antioxidant properties.Using the 1-methyl-4-phenylpyridinium ion(MPP^(+))-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mice,Cath-KP was found to penetrate cells and reach deep brain tissues,resulting in improved MPP^(+)-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1(Sirt1)/Nuclear factor erythroid 2-related factor 2(Nrf2)pathway activation.Both focal adhesion kinase(FAK)and p38 were also identified as regulatory elements.In the MPTP-induced PD mice,Cath-KP administration increased the number of tyrosine hydroxylase(TH)-positive neurons,restored TH content,and ameliorated dyskinesia.To the best of our knowledge,this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress.These findings expand the known functions of cathelicidins,and hold promise for the development of therapeutic agents for PD.展开更多
Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body ...Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body lack a binary feature.Based on effective medium theory,this paper presents the governing equation of the“elastic modulus”for combined and single bodies under triaxial compressive tests.A binary effective medium model is then established.Based on the compressive experiment of concretegranite combined bodies,the feasibility of determining the stress threshold based on crack axial strain is discussed,and the model is verified.The model is further extended to coal-rock combined bodies of more diverse types,and the variation laws of the compressive mechanical parameters are then discussed.The results show that the fitting accuracy of the model with the experimental curves of the concretegranite combined bodies and various types of coal-rock combined bodies are over 95%.The crack axial strain method can replace the crack volumetric strain method,which clarifies the physical meanings of the model parameters.The variation laws of matrix parameters and crack parameters are discussed in depth and are expected to be more widely used in geotechnical engineering.展开更多
Curculigoside(CCG)is a phenolic glycoside compound extracted from the root of a natural plant called Curculigo orchioides Gaertn.In this study,the neuroprotective effect of CCG through oxidative stress mediated mitoch...Curculigoside(CCG)is a phenolic glycoside compound extracted from the root of a natural plant called Curculigo orchioides Gaertn.In this study,the neuroprotective effect of CCG through oxidative stress mediated mitochondrial dysfunction on L-glutamate(L-Glu)-damaged hippocampal neuron cell line(HT22)and APPswe/PSEN1dE9 transgenic(APP/PS1)mice were investigated.Observably,CCG in L-Glu-damaged HT22 cells suppressed apoptosis,reduced the accumulation of reactive oxygen species,balanced the mitochondrial membrane potential and prevented the over-influx of calcium.In APP/PS1 mice,4-week CCG administration significantly improved their memory and behavioral impairments,enhanced the function of cholinergic system,reduced the deposition of Aβand neurofibrillary fiber tangles caused by tau phosphorylation,and suppressed the development and progression of oxidative stress in brains of APP/PS1 mice.Based on the screening of proteomic analysis on hippocampus,CCG were confirmed that it could regulate the expression levels of proteins related to mitochondrial dysfunction,mainly through activating on AMPK/Nrf2 signaling,in APP/PS1 mice and L-Glu-exposed HT22 cells.CCG has a prominent neuroprotective effect on regulate the AMPK/Nrf2-mediated mitochondrial dysfunction in cells APP/PS1 mice support CCG is a potentially potent drug for AD treatment and merits further investigation.展开更多
Investigating spatiotemporal changes in crustal stress associated with major earthquakes has implications for understanding seismogenic processes.However,in individual earthquake cases,the characteristics of the stres...Investigating spatiotemporal changes in crustal stress associated with major earthquakes has implications for understanding seismogenic processes.However,in individual earthquake cases,the characteristics of the stress after it reaches its maximum value are rarely discussed.In this study,we use the 2021 M_S6.4 Yangbi earthquake in Yunnan,China and events of magnitudes M_L≥3.0 occurred in the surrounding area in the previous 11 years to investigate the spatiotemporal evolution of apparent stress.The results indicate that apparent stress began to increase in January 2015 and reached a maximum in January 2020.Apparent stress then remained at a high level until October 2020,after which it declined considerable.We suggest that the stress was in the accumulation stage from January 2015 to January 2020,and entered the meta-instability stage after October 2020.During the meta-instability stage,the zone of decreasing stress expanded continuously and the apparent stress increased around the Yangbi earthquake source region.These features are generally consistent with the results of laboratory rock stress experiments.We propose that apparent stress can be a good indicator for determining whether the stress at a specific location has entered the meta-instability stage and may become the epicenter of an impending strong earthquake.展开更多
Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental ...Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments.展开更多
Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the m...Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.展开更多
While the Bushen Yizhi Formula can treat Alzheimer’s disease(AD),the yet to be ascertained specific mechanism of action was explored in this work.Methods:Different concentrations of the Bushen Yizhi Formula and amylo...While the Bushen Yizhi Formula can treat Alzheimer’s disease(AD),the yet to be ascertained specific mechanism of action was explored in this work.Methods:Different concentrations of the Bushen Yizhi Formula and amyloid-beta peptide(Aβ)were used to treat rat pheochromocytoma cells(P12)and human neuroblastoma cells(SH-SY5Y).Cell morphological changes were observed to determine the in vitro cell damage.Cell Counting Kit(CCK)-8 assay and flow cytometry were employed to identify cell viability and apoptosis/cell cycle,respectively.Western blotting and immunohistochemistry were employed to measure the expressions of endoplasmic reticulum stress(ERS)-related proteins(GRP78 and CHOP),p-IRE1α,IRE1α,ASK1,p-JNK,JNK,Bax,Bcl-2,XBP-1,and Bim.Fura 2-acetoxymethyl ester(Fura-2/AM)was used to determine the intracellular calcium(Ca^(2+))concentration.Also,an AD model was constructed by injecting Aβinto the CA1 area of the hippocampus in Sprague Dawley rats.AD model rats were gavaged with different concentrations of Bushen Yizhi Formula for 14 consecutive days.The Morris water maze experiment was conducted to test the learning and memory of rats.Hematoxylin&Eosin(H&E)and Terminal-deoxynucleotidyl Transferase(TdT)-mediated dUTP Nick-End Labeling(TUNEL)staining were done to determine histopathological changes in the brain.Results:Bushen Yizhi Formula relieved the Aβ-induced effects including cell injury,decreased viability,increased apoptosis,G0/G1 phase cell cycle arrest,upregulation of GRP78,CHOP,p-IRE1α,p-JNK,Bax,XBP-1 and Bim,as well as down-regulation of Bcl-2.These results were also seen with IRE1αsilencing.While Aβsuppressed the learning and memory abilities of rats,the Bushen Yizhi Formula alleviated these effects of Aβ.Brain nerve cell injury induced by Aβcould also be treated with Bushen Yizhi Formula.Conclusion:Bushen Yizhi Formula could influence ERS through the IRE1αsignaling pathway to achieve its therapeutic effects on AD.展开更多
On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of t...On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault.展开更多
The presence of stress is shown to have a significant impact on chloride ions in concrete. Reinforced concrete is usually durable and cost-effective which has resulted in its widespread use for construction, however, ...The presence of stress is shown to have a significant impact on chloride ions in concrete. Reinforced concrete is usually durable and cost-effective which has resulted in its widespread use for construction, however, the concrete subjected to environment and load has become increasingly apparently that attacked by aggressive agents such as chloride ion. In this study, the coupling influences are stress effects and environmental problems on the coastline concrete durability have been investigated. A series of cyclic of a wet-dry cycle and submersion tests were performed onto the stressed concrete to obtain an understanding of the physical mechanisms causing the accumulation of chlorides in the interior pores of concrete under different stress types and exposure environments, based on the same duration. Specimens were prepared and subjected to NaCl solution in a wet-dry cycle and submersion, the chloride in the tension zone is gradual with increasing the stress level, as well as the chloride ion in the wet-dry cycle, is increasing the number of cycles. The apparent diffusion coefficient of each specimen was calculated respectively, the profile of concentration at a different section of tension and compression zones were presented in influence factors of the number of cycles, the length of drying phase, and periodic wetting cycles with sodium solution was discussed. After employed Fick’s second law, the results suggested D<sub>a</sub> in a wet-dry cycle is much higher than the D<sub>a</sub> in submersion zones.展开更多
针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月1...针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月15日)的ATSCTF变化。地震发生时,ATSCTF垂直方向分量处于高相位点附近,显示引潮力对本次正断层走滑型地震具有诱发作用。以ATSCTF变化周期的各低相位点时间(2012年12月19日、2013年1月4日、2013年1月18日、2013年2月2日)数据分别为背景,各周期期后数据分别与背景逐日相减,计算研究区(36°N~46°N,118°E~128°E)范围内,National Oceanic and Atmospheric Administration(NOAA)卫星射出长波辐射数据(Outgoing Long Wave Radiation,OLR)在各ATSCTF周期时段分布及其变化。结果显示,无震的ATSCTF变化的A、B、D周期,震中附近OLR无变化;发震的ATSCTF变化的C周期,在空间上,该地区震前OLR仅震中及其南侧区域发生了显著连续升高变化过程,在时间上经历了初始微异常→异常加强→高峰→衰减→发震→平静的演化过程,与岩石应力加载—破裂经历:初始微动破裂→扩张破裂→应力闭锁→地震爆发→平静的力学演化过程中各阶段红外辐射特征一致;显示引潮力对处于临界状态的活动断层具有诱发作用,而OLR是地震构造应力应变过程辐射表征。展开更多
Objective:To investigate the neuroprotective effect of C-phycocyanin in a mouse model of rotenone-induced Parkinson’s disease.Methods:C-phycocyanin(50 mg/kg,i.p.,daily)was administered to rotenone(30 mg/kg,p.o.,daily...Objective:To investigate the neuroprotective effect of C-phycocyanin in a mouse model of rotenone-induced Parkinson’s disease.Methods:C-phycocyanin(50 mg/kg,i.p.,daily)was administered to rotenone(30 mg/kg,p.o.,daily)treated mice for 28 days.Behavioral studies(Y-maze,rotarod,round beam walk,and wire-hang tests)were carried out to assess neurobehavioral deficits.Glutathione and malondialdehyde were determined in both serum and striatal tissue.Molecular proteins(AKT,AMPK,NF-κB,BDNF,and alpha-synuclein)in the striatum were estimated using ELISA.Histopathological analyses(hematoxylin and eosin stainning as well as Nissl staining)were carried out to assess structural abnormalities in the striatum.Results:C-phycocyanin significantly increased BDNF levels and decreased alpha-synuclein levels.It also slightly upregulated AMPK and AKT levels without significant difference compared with the rotenone group.Additionally,rotenone-induced elevated oxidative stress and structural abnormalities in the striatum were markedly mitigated by C-phycocyanin.Conclusions:C-phycocyanin might have potential neuroprotective effects against Parkinson’s disease.Further studies are warranted to verify its efficacy and to understand the molecular mechanisms behind the neuroprotective effects of C-phycocyanin in Parkinson’s disease.展开更多
Aging is a natural phenomenon characterized by a progressive decline in physiological integrity,leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases,...Aging is a natural phenomenon characterized by a progressive decline in physiological integrity,leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases,including cardiovascular diseases,osteoporosis,cancer,diabetes,and neurodegeneration.Aging is considered the major risk factor for Parkinson’s and Alzheimer’s disease develops.Likewise,diabetes and insulin resistance constitute additional risk factors for developing neurodegenerative disorders.Currently,no treatment can effectively reverse these neurodegenerative pathologies.However,some antidiabetic drugs have opened the possibility of being used against neurodegenerative processes.In the previous framework,Vanadium species have demonstrated a notable antidiabetic effect.Our research group evaluated polyoxidovanadates such as decavanadate and metforminium-decavanadate with preventive and corrective activity on neurodegeneration in brain-specific areas from rats with metabolic syndrome.The results suggest that these polyoxidovanadates induce neuronal and cognitive restoration mechanisms.This review aims to describe the therapeutic potential of polyoxidovanadates as insulin-enhancer agents in the brain,constituting a therapeutic alternative for aging and neurodegenerative diseases.展开更多
In China,Parkinson’s disease(PD)is the second most prevalent central nervous system(CNS)degenerative illness affecting middle-aged and older persons.Movement disorders including resting tremor,bradykinesia,myotonia,p...In China,Parkinson’s disease(PD)is the second most prevalent central nervous system(CNS)degenerative illness affecting middle-aged and older persons.Movement disorders including resting tremor,bradykinesia,myotonia,postural instability,and gait instability are the predominant clinical symptoms.The two main types of PD are sporadic and familial,with sporadic PD being the more prevalent of the two.The environment,genetics,mitochondrial dysfunction,oxidative stress,inflammation,protein aggregation and misfolding,loss of trophic factors,cell death,and gut microbiota may all have a role in the etiology of PD.PD is inversely connected with other cancers and positively correlated with COVID-19,diabetes mellitus(DM),melanoma,and ischemic heart disease(IHD)risk.Delaying disease progression,managing motor and non-motor symptoms,and avoiding and controlling dysfunction in the middle and later phases of the disease are the key areas of research and development for its therapy.Presently,the development and progression of PD can be slowed down by using conventional pharmacology,natural items,and innovative technology.This article reviews the pathogenesis of PD,its correlations with other non-genetic diseases,and the research progress of drugs and technologies for alleviating PD.展开更多
基金supported by the National Natural Science Foundation of China(31772476 and 31911530077 to X.X.,81870991 and U1603281 to S.Q.)Guangdong Basic and Applied Basic Research Foundation(2023A1515010914 to X.X.)Natural Science Foundation of Guangdong Province(2022A1515010352 to S.Q.)。
文摘Parkinson’s disease(PD)is a neurodegenerative condition that results in dyskinesia,with oxidative stress playing a pivotal role in its progression.Antioxidant peptides may thus present therapeutic potential for PD.In this study,a novel cathelicidin peptide(Cath-KP;GCSGRFCNLF NNRRPGRLTLIHRPGGDKRTSTGLIYV)was identified from the skin of the Asiatic painted frog(Kaloula pulchra).Structural analysis using circular dichroism and homology modeling revealed a uniqueαββconformation for Cath-KP.In vitro experiments,including free radical scavenging and ferric-reducing antioxidant analyses,confirmed its antioxidant properties.Using the 1-methyl-4-phenylpyridinium ion(MPP^(+))-induced dopamine cell line and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced PD mice,Cath-KP was found to penetrate cells and reach deep brain tissues,resulting in improved MPP^(+)-induced cell viability and reduced oxidative stress-induced damage by promoting antioxidant enzyme expression and alleviating mitochondrial and intracellular reactive oxygen species accumulation through Sirtuin-1(Sirt1)/Nuclear factor erythroid 2-related factor 2(Nrf2)pathway activation.Both focal adhesion kinase(FAK)and p38 were also identified as regulatory elements.In the MPTP-induced PD mice,Cath-KP administration increased the number of tyrosine hydroxylase(TH)-positive neurons,restored TH content,and ameliorated dyskinesia.To the best of our knowledge,this study is the first to report on a cathelicidin peptide demonstrating potent antioxidant and neuroprotective properties in a PD model by targeting oxidative stress.These findings expand the known functions of cathelicidins,and hold promise for the development of therapeutic agents for PD.
基金the Major Program of National Natural Science Foundation of China(No.41941019)Shaanxi Province Innovative Talent Promotion Plan-Science and Technology Innovation Team(No.2021TD-55)Central University Natural Science Innovation Team(No.300102262402)。
文摘Combined bodies of rock-like material and rock are widely encountered in geotechnical engineering,such as tunnels and mines.The existing theoretical models describing the stress-strain relationship of a combined body lack a binary feature.Based on effective medium theory,this paper presents the governing equation of the“elastic modulus”for combined and single bodies under triaxial compressive tests.A binary effective medium model is then established.Based on the compressive experiment of concretegranite combined bodies,the feasibility of determining the stress threshold based on crack axial strain is discussed,and the model is verified.The model is further extended to coal-rock combined bodies of more diverse types,and the variation laws of the compressive mechanical parameters are then discussed.The results show that the fitting accuracy of the model with the experimental curves of the concretegranite combined bodies and various types of coal-rock combined bodies are over 95%.The crack axial strain method can replace the crack volumetric strain method,which clarifies the physical meanings of the model parameters.The variation laws of matrix parameters and crack parameters are discussed in depth and are expected to be more widely used in geotechnical engineering.
基金supported by the Science and Technology Develop Project in Jilin Province of China(20200201030JC)the Scientific Research Project of Education Department of Jilin Province in China(JJKH20211461KJ)Characteristic Innovation Project for Guangdong University of China(2019KTSCX221).
文摘Curculigoside(CCG)is a phenolic glycoside compound extracted from the root of a natural plant called Curculigo orchioides Gaertn.In this study,the neuroprotective effect of CCG through oxidative stress mediated mitochondrial dysfunction on L-glutamate(L-Glu)-damaged hippocampal neuron cell line(HT22)and APPswe/PSEN1dE9 transgenic(APP/PS1)mice were investigated.Observably,CCG in L-Glu-damaged HT22 cells suppressed apoptosis,reduced the accumulation of reactive oxygen species,balanced the mitochondrial membrane potential and prevented the over-influx of calcium.In APP/PS1 mice,4-week CCG administration significantly improved their memory and behavioral impairments,enhanced the function of cholinergic system,reduced the deposition of Aβand neurofibrillary fiber tangles caused by tau phosphorylation,and suppressed the development and progression of oxidative stress in brains of APP/PS1 mice.Based on the screening of proteomic analysis on hippocampus,CCG were confirmed that it could regulate the expression levels of proteins related to mitochondrial dysfunction,mainly through activating on AMPK/Nrf2 signaling,in APP/PS1 mice and L-Glu-exposed HT22 cells.CCG has a prominent neuroprotective effect on regulate the AMPK/Nrf2-mediated mitochondrial dysfunction in cells APP/PS1 mice support CCG is a potentially potent drug for AD treatment and merits further investigation.
基金supported by the China National Key R&D Program (No.2018YFC1503305)the Special fund of the Institute of Geophysics,China Earthquake Administration (No.DQJB22Z04)。
文摘Investigating spatiotemporal changes in crustal stress associated with major earthquakes has implications for understanding seismogenic processes.However,in individual earthquake cases,the characteristics of the stress after it reaches its maximum value are rarely discussed.In this study,we use the 2021 M_S6.4 Yangbi earthquake in Yunnan,China and events of magnitudes M_L≥3.0 occurred in the surrounding area in the previous 11 years to investigate the spatiotemporal evolution of apparent stress.The results indicate that apparent stress began to increase in January 2015 and reached a maximum in January 2020.Apparent stress then remained at a high level until October 2020,after which it declined considerable.We suggest that the stress was in the accumulation stage from January 2015 to January 2020,and entered the meta-instability stage after October 2020.During the meta-instability stage,the zone of decreasing stress expanded continuously and the apparent stress increased around the Yangbi earthquake source region.These features are generally consistent with the results of laboratory rock stress experiments.We propose that apparent stress can be a good indicator for determining whether the stress at a specific location has entered the meta-instability stage and may become the epicenter of an impending strong earthquake.
基金supported by the National Natural Science Foundation of China,Nos.82071190 and 82371438(to LC)Innovative Strong School Project of Guangdong Medical University,No.4SG21230G(to LC)Scientific Research Foundation of Guangdong Medical University,No.GDMUM2020017(to CL)。
文摘Alzheimer s disease,among the most common neurodegenerative disorders,is chara cterized by progressive cognitive impairment.At present,the Alzheimer’s disease main risk remains genetic ris ks,but major environmental fa ctors are increasingly shown to impact Alzheimer’s disease development and progression.Microglia,the most important brain immune cells,play a central role in Alzheimer’s disease pathogenesis and are considered environmental and lifestyle"sensors."Factors like environmental pollution and modern lifestyles(e.g.,chronic stress,poor dietary habits,sleep,and circadian rhythm disorde rs)can cause neuroinflammato ry responses that lead to cognitive impairment via microglial functioning and phenotypic regulation.However,the specific mechanisms underlying interactions among these facto rs and microglia in Alzheimer’s disease are unclear.Herein,we:discuss the biological effects of air pollution,chronic stress,gut micro biota,sleep patterns,physical exercise,cigarette smoking,and caffeine consumption on microglia;consider how unhealthy lifestyle factors influence individual susceptibility to Alzheimer’s disease;and present the neuroprotective effects of a healthy lifestyle.Toward intervening and controlling these environmental risk fa ctors at an early Alzheimer’s disease stage,understanding the role of microglia in Alzheimer’s disease development,and to rgeting strategies to to rget microglia,co uld be essential to future Alzheimer’s disease treatments.
基金supported by the Key Science and Technology Research of Henan Province,No.222102310351(to JW)Luoyang 2022 Medical and Health Guiding Science and Technology Plan Project,No.2022057Y(to JY)Henan Medical Science and Technology Research Program Province-Ministry Co-sponsorship,No.SBGJ202002099(to JY)。
文摘Endoplasmic reticulum stress and mitochondrial dysfunction play important roles in Parkinson s disease,but the regulato ry mechanism remains elusive.Prohibitin-2(PHB2)is a newly discove red autophagy receptor in the mitochondrial inner membrane,and its role in Parkinson’s disease remains unclear.Protein kinase R(PKR)-like endoplasmic reticulum kinase(PERK)is a factor that regulates cell fate during endoplasmic reticulum stress.Parkin is regulated by PERK and is a target of the unfolded protein response.It is unclear whether PERK regulates PHB2-mediated mitophagy thro ugh Parkin.In this study,we established a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of Parkinson’s disease.We used adeno-associated virus to knockdown PHB2 expression.Our res ults showed that loss of dopaminergic neurons and motor deficits were aggravated in the MPTP-induced mouse model of Parkinson’s disease.Ove rexpression of PHB2 inhibited these abnormalities.We also established a 1-methyl-4-phenylpyridine(MPP+)-induced SH-SY5Y cell model of Parkinson’s disease.We found that ove rexpression of Parkin increased co-localization of PHB2 and microtubule-associated protein 1 light chain 3,and promoted mitophagy.In addition,MPP+regulated Parkin involvement in PHB2-mediated mitophagy through phosphorylation of PERK.These findings suggest that PHB2 participates in the development of Parkinson’s disease by intera cting with endoplasmic reticulum stress and Parkin.
基金supported by the National Natural Science Foundation of China[81904266,82004309].
文摘While the Bushen Yizhi Formula can treat Alzheimer’s disease(AD),the yet to be ascertained specific mechanism of action was explored in this work.Methods:Different concentrations of the Bushen Yizhi Formula and amyloid-beta peptide(Aβ)were used to treat rat pheochromocytoma cells(P12)and human neuroblastoma cells(SH-SY5Y).Cell morphological changes were observed to determine the in vitro cell damage.Cell Counting Kit(CCK)-8 assay and flow cytometry were employed to identify cell viability and apoptosis/cell cycle,respectively.Western blotting and immunohistochemistry were employed to measure the expressions of endoplasmic reticulum stress(ERS)-related proteins(GRP78 and CHOP),p-IRE1α,IRE1α,ASK1,p-JNK,JNK,Bax,Bcl-2,XBP-1,and Bim.Fura 2-acetoxymethyl ester(Fura-2/AM)was used to determine the intracellular calcium(Ca^(2+))concentration.Also,an AD model was constructed by injecting Aβinto the CA1 area of the hippocampus in Sprague Dawley rats.AD model rats were gavaged with different concentrations of Bushen Yizhi Formula for 14 consecutive days.The Morris water maze experiment was conducted to test the learning and memory of rats.Hematoxylin&Eosin(H&E)and Terminal-deoxynucleotidyl Transferase(TdT)-mediated dUTP Nick-End Labeling(TUNEL)staining were done to determine histopathological changes in the brain.Results:Bushen Yizhi Formula relieved the Aβ-induced effects including cell injury,decreased viability,increased apoptosis,G0/G1 phase cell cycle arrest,upregulation of GRP78,CHOP,p-IRE1α,p-JNK,Bax,XBP-1 and Bim,as well as down-regulation of Bcl-2.These results were also seen with IRE1αsilencing.While Aβsuppressed the learning and memory abilities of rats,the Bushen Yizhi Formula alleviated these effects of Aβ.Brain nerve cell injury induced by Aβcould also be treated with Bushen Yizhi Formula.Conclusion:Bushen Yizhi Formula could influence ERS through the IRE1αsignaling pathway to achieve its therapeutic effects on AD.
基金the National Natural Science Foundation of China(Project Nos.41804046 and 41974050)the Special Fund of the Key Laboratory of Earthquake Prediction,China Earthquake Administration(No.CEAIEF2022010100).
文摘On December 18,2023,an M_(s)6.2 earthquake occurred in Jishishan,Gansu Province,China.This earthquake happened in the eastern region of the Qilian Orogenic Belt,which is situated at the forefront of the NE margin of the Tibetan Plateau(i.e.,Qinghai-Tibet Plateau),encompassing a rhombic-shaped area that intersects the Qilian-Qaidam Basin,Alxa Block,Ordos Block,and South China Block.In this study,we analyzed the deep tectonic pattern of the Jishishan earthquake by incorporating data on the crustal thickness,velocity structure,global navigation satellite system(GNSS)strain field,and anisotropy.We discovered that the location of the earthquake was related to changes in the crustal structure.The results showed that the Jishishan M_(s)6.2 earthquake occurred in a unique position,with rapid changes in the crustal thickness,Vp/Vs,phase velocity,and S-wave velocity.The epicenter of the earthquake was situated at the transition zone between high and low velocities and was in proximity to a low-velocity region.Additionally,the source area is flanked by two high-velocity anomalies from the east and west.The principal compressive strain orientation near the Lajishan Fault is primarily in the NNE and NE directions,which align with the principal compressive stress direction in this region.In some areas of the Lajishan Fault,the principal compressive strain orientations show the NNW direction,consistent with the direction of the upper crustal fast-wave polarization from local earthquakes and the phase velocity azimuthal anisotropy.These features underscore the relationship between the occurrence of the Jishishan M_(s)6.2 earthquake and the deep inhomogeneous structure and deep tectonic characteristics.The NE margin of the Tibetan Plateau was thickened by crustal extension in the process of northeastward expansion,and the middle and lower crustal materials underwent structural deformation and may have been filled with salt-containing fluids during the extension process.The presence of this weak layer makes it easier for strong earthquakes to occur through the release of overlying rigid crustal stresses.However,it is unlikely that an earthquake of comparable or larger magnitude would occur in the short term(e.g.,in one year)at the Jishishan east margin fault.
文摘The presence of stress is shown to have a significant impact on chloride ions in concrete. Reinforced concrete is usually durable and cost-effective which has resulted in its widespread use for construction, however, the concrete subjected to environment and load has become increasingly apparently that attacked by aggressive agents such as chloride ion. In this study, the coupling influences are stress effects and environmental problems on the coastline concrete durability have been investigated. A series of cyclic of a wet-dry cycle and submersion tests were performed onto the stressed concrete to obtain an understanding of the physical mechanisms causing the accumulation of chlorides in the interior pores of concrete under different stress types and exposure environments, based on the same duration. Specimens were prepared and subjected to NaCl solution in a wet-dry cycle and submersion, the chloride in the tension zone is gradual with increasing the stress level, as well as the chloride ion in the wet-dry cycle, is increasing the number of cycles. The apparent diffusion coefficient of each specimen was calculated respectively, the profile of concentration at a different section of tension and compression zones were presented in influence factors of the number of cycles, the length of drying phase, and periodic wetting cycles with sodium solution was discussed. After employed Fick’s second law, the results suggested D<sub>a</sub> in a wet-dry cycle is much higher than the D<sub>a</sub> in submersion zones.
基金地震数值预测联合实验室开放基金项目(2020LNEF03)APSCO Earthquake Research Project PhaseⅡ:Integrating Satellite and Ground Observations for Earthquake Signatures and Precursors(WX0519502)。
文摘针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月15日)的ATSCTF变化。地震发生时,ATSCTF垂直方向分量处于高相位点附近,显示引潮力对本次正断层走滑型地震具有诱发作用。以ATSCTF变化周期的各低相位点时间(2012年12月19日、2013年1月4日、2013年1月18日、2013年2月2日)数据分别为背景,各周期期后数据分别与背景逐日相减,计算研究区(36°N~46°N,118°E~128°E)范围内,National Oceanic and Atmospheric Administration(NOAA)卫星射出长波辐射数据(Outgoing Long Wave Radiation,OLR)在各ATSCTF周期时段分布及其变化。结果显示,无震的ATSCTF变化的A、B、D周期,震中附近OLR无变化;发震的ATSCTF变化的C周期,在空间上,该地区震前OLR仅震中及其南侧区域发生了显著连续升高变化过程,在时间上经历了初始微异常→异常加强→高峰→衰减→发震→平静的演化过程,与岩石应力加载—破裂经历:初始微动破裂→扩张破裂→应力闭锁→地震爆发→平静的力学演化过程中各阶段红外辐射特征一致;显示引潮力对处于临界状态的活动断层具有诱发作用,而OLR是地震构造应力应变过程辐射表征。
文摘Objective:To investigate the neuroprotective effect of C-phycocyanin in a mouse model of rotenone-induced Parkinson’s disease.Methods:C-phycocyanin(50 mg/kg,i.p.,daily)was administered to rotenone(30 mg/kg,p.o.,daily)treated mice for 28 days.Behavioral studies(Y-maze,rotarod,round beam walk,and wire-hang tests)were carried out to assess neurobehavioral deficits.Glutathione and malondialdehyde were determined in both serum and striatal tissue.Molecular proteins(AKT,AMPK,NF-κB,BDNF,and alpha-synuclein)in the striatum were estimated using ELISA.Histopathological analyses(hematoxylin and eosin stainning as well as Nissl staining)were carried out to assess structural abnormalities in the striatum.Results:C-phycocyanin significantly increased BDNF levels and decreased alpha-synuclein levels.It also slightly upregulated AMPK and AKT levels without significant difference compared with the rotenone group.Additionally,rotenone-induced elevated oxidative stress and structural abnormalities in the striatum were markedly mitigated by C-phycocyanin.Conclusions:C-phycocyanin might have potential neuroprotective effects against Parkinson’s disease.Further studies are warranted to verify its efficacy and to understand the molecular mechanisms behind the neuroprotective effects of C-phycocyanin in Parkinson’s disease.
基金funded by project from National Research System (CONACYT),Mexico (to SIGC)
文摘Aging is a natural phenomenon characterized by a progressive decline in physiological integrity,leading to a deterioration of cognitive function and increasing the risk of suffering from chronic-degenerative diseases,including cardiovascular diseases,osteoporosis,cancer,diabetes,and neurodegeneration.Aging is considered the major risk factor for Parkinson’s and Alzheimer’s disease develops.Likewise,diabetes and insulin resistance constitute additional risk factors for developing neurodegenerative disorders.Currently,no treatment can effectively reverse these neurodegenerative pathologies.However,some antidiabetic drugs have opened the possibility of being used against neurodegenerative processes.In the previous framework,Vanadium species have demonstrated a notable antidiabetic effect.Our research group evaluated polyoxidovanadates such as decavanadate and metforminium-decavanadate with preventive and corrective activity on neurodegeneration in brain-specific areas from rats with metabolic syndrome.The results suggest that these polyoxidovanadates induce neuronal and cognitive restoration mechanisms.This review aims to describe the therapeutic potential of polyoxidovanadates as insulin-enhancer agents in the brain,constituting a therapeutic alternative for aging and neurodegenerative diseases.
基金supported partly by the National Natural Science Foundation of China(32161143021,81271410)Henan University Graduate《Talent Program》of Henan Province(SYLYC2023092)Henan Natural Science Foundation of China(182300410313).
文摘In China,Parkinson’s disease(PD)is the second most prevalent central nervous system(CNS)degenerative illness affecting middle-aged and older persons.Movement disorders including resting tremor,bradykinesia,myotonia,postural instability,and gait instability are the predominant clinical symptoms.The two main types of PD are sporadic and familial,with sporadic PD being the more prevalent of the two.The environment,genetics,mitochondrial dysfunction,oxidative stress,inflammation,protein aggregation and misfolding,loss of trophic factors,cell death,and gut microbiota may all have a role in the etiology of PD.PD is inversely connected with other cancers and positively correlated with COVID-19,diabetes mellitus(DM),melanoma,and ischemic heart disease(IHD)risk.Delaying disease progression,managing motor and non-motor symptoms,and avoiding and controlling dysfunction in the middle and later phases of the disease are the key areas of research and development for its therapy.Presently,the development and progression of PD can be slowed down by using conventional pharmacology,natural items,and innovative technology.This article reviews the pathogenesis of PD,its correlations with other non-genetic diseases,and the research progress of drugs and technologies for alleviating PD.