Retrieval of cloud parameters is fundamental for descriptions of the cloud process in weather and cloud models, and is also the base for theoretical and applicational investigations on weather modification, aerosol- c...Retrieval of cloud parameters is fundamental for descriptions of the cloud process in weather and cloud models, and is also the base for theoretical and applicational investigations on weather modification, aerosol- cloud-precipitation interaction, cloud-radiative climate effects, and so on. However, it is still difficult to ob- rain full information of cloud parameters over a wide area under the current level of science and technology. Luckily, parameters at the top of clouds can be retrieved with the satellite spectrum remote sensing, which is useful in obtaining global cloud properties. In this paper, cloud parameters retrieved by the bispectral reflectance (BSR) method and other methods developed on the basis of the BSR are briefly summarized. Recent advances in studies on the indirect effects of aerosol on cloud parameters are reviewed. The rela- tionships among cloud parameters and precipitation intensity, type, and structure are elaborated on, based upon the pixel-level merged datasets derived from daily measurements of precipitation radar and visible and infrared scanner, together with cloud parameters retrieved by the BSR. It is revealed that cloud particle effective radius and liquid water path near cloud tops are effective to identify the thickness and intensity of convective precipitating clouds. Furthermore, the differences in cloud parameters and precipitation intensity for precipitating and non-precipitating clouds over land and ocean are compared in this paper.展开更多
基金Supported by the Strategic Priority Research Program(XDA05100303)National(Key)Basic Research and Development(973)Program of China(2010CB428601)+1 种基金China Meteorological Administration Special Public Welfare Research Fund(GYHY201306077)National Natural Science Foundation of China(41230419,91337213,and 41205126)
文摘Retrieval of cloud parameters is fundamental for descriptions of the cloud process in weather and cloud models, and is also the base for theoretical and applicational investigations on weather modification, aerosol- cloud-precipitation interaction, cloud-radiative climate effects, and so on. However, it is still difficult to ob- rain full information of cloud parameters over a wide area under the current level of science and technology. Luckily, parameters at the top of clouds can be retrieved with the satellite spectrum remote sensing, which is useful in obtaining global cloud properties. In this paper, cloud parameters retrieved by the bispectral reflectance (BSR) method and other methods developed on the basis of the BSR are briefly summarized. Recent advances in studies on the indirect effects of aerosol on cloud parameters are reviewed. The rela- tionships among cloud parameters and precipitation intensity, type, and structure are elaborated on, based upon the pixel-level merged datasets derived from daily measurements of precipitation radar and visible and infrared scanner, together with cloud parameters retrieved by the BSR. It is revealed that cloud particle effective radius and liquid water path near cloud tops are effective to identify the thickness and intensity of convective precipitating clouds. Furthermore, the differences in cloud parameters and precipitation intensity for precipitating and non-precipitating clouds over land and ocean are compared in this paper.