This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is...This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is vMidated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM.展开更多
We study the fluctuation-activated transition process in a system of two coupled forced bistable oscillators with a mismatch σ in the force constants. As the coupling strength μ is increased, the transition pathway ...We study the fluctuation-activated transition process in a system of two coupled forced bistable oscillators with a mismatch σ in the force constants. As the coupling strength μ is increased, the transition pathway undergoes four stages changes from a two-step process with two candidate pathways to a mixture of a two-step pathway and a one-step pathway to a one-step process with also two candidate pathways and then to a one-step process with a single pathway.Interestingly, we find that the total transition rate depends nonmonotonically on σ in the weak coupling: a maximal rate appears in an intermediate magnitude of σ. Moreover, the rate also exhibits an unexpected maximum as a function ofμ. The results are in an excellent agreement with our numerical simulations by forward flux sampling.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 51277165the Natural Science Foundation of Zhejiang Province under Grant No LY15F10001
文摘This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is vMidated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM.
基金Supported by Natural Science Foundation of China under Grant Nos.11205002,11475003,21125313"211 project"of Anhui University under Grant No.02303319-33190133
文摘We study the fluctuation-activated transition process in a system of two coupled forced bistable oscillators with a mismatch σ in the force constants. As the coupling strength μ is increased, the transition pathway undergoes four stages changes from a two-step process with two candidate pathways to a mixture of a two-step pathway and a one-step pathway to a one-step process with also two candidate pathways and then to a one-step process with a single pathway.Interestingly, we find that the total transition rate depends nonmonotonically on σ in the weak coupling: a maximal rate appears in an intermediate magnitude of σ. Moreover, the rate also exhibits an unexpected maximum as a function ofμ. The results are in an excellent agreement with our numerical simulations by forward flux sampling.