To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the para...To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the parallel-track BiSAR system can not remain invariant in an aperture,an actual aperture is divided into subapertures so that it is reasonable to assume that the aircrafts move with constant acceleration vector in a subaperture.Based on this model,an improved CSA is derived.The new phase factors incorporate three-dimensional acceleration and velocity.The motion compensation procedure is integrated into the CSA without additional operation required.The simulation results show that the presented algorithm can efficiently resolve motion compensation for parallel-track BiSAR.展开更多
In this paper, we propose a simplified spatial channel sounding method by utilizing bistatic synthetic aperture radar(BiSAR) principles. Despite the different deployment geometries compared with a conventional BiSAR s...In this paper, we propose a simplified spatial channel sounding method by utilizing bistatic synthetic aperture radar(BiSAR) principles. Despite the different deployment geometries compared with a conventional BiSAR system, the feasibility of the approach is established by 1) the proposed method achieves a better spatial resolution than conventional directional channel sounders and 2) reconstruction algorithms based on time-domain backprojection in conjunction with a digital elevation model provide a good imaging performance and are suitable for reconstructing the spatial distribution of scatterers. Simulations of a high-speed rail(HSR) scenario demonstrate that the estimated power delay profiles(PDPs) and power angle profiles(PAPs) are close to the actual values.展开更多
A new method is presented to improve guidance precision. This method is based on bistatic synthetic aperture radar. The illuminator works in side looking mode, providing the synthetic aperture and the receiver is disp...A new method is presented to improve guidance precision. This method is based on bistatic synthetic aperture radar. The illuminator works in side looking mode, providing the synthetic aperture and the receiver is disposed on the seeker which operates in the forward looking mode. The receiving antenna is composed of four sub-antennas and so four synthetic aperture radar (SAR) images are to be generated. Target is positioned in SAR images by image matching. The bearing and elevation of image element of target are measured by the principle of monopulse angular measurement. Theory of the proposed method is derived and simulation on bearing measurement is done. Simulation shows that the method is valid and if SNR of target's image is above 30 dB, the angular measuring difference is within the confines of 0.04 degree.展开更多
LuTan-1(LT-1)is a constellation with two full-polarization L-band radar satellites designed by China,and the first satellite was scheduled to be launched in December 2021 and the second one in January 2022.The LT-1 wi...LuTan-1(LT-1)is a constellation with two full-polarization L-band radar satellites designed by China,and the first satellite was scheduled to be launched in December 2021 and the second one in January 2022.The LT-1 will be operated for deformation monitoring in repeat-pass mode,and for DEM generation in bistatic mode,improving self-sufficiency of SAR data for the field of geology,earthquake,disaster reduction,geomatics,forestry and so on.In this paper,we focused on designing an algorithm for interferometric DEM generation using LT-1 bistatic satellites.The basic principle,main error sources and errors control of the DEM generation algorithm of LT-1 were systematically analyzed.The experiment results demonstrated that:①The implemented algorithm had rigorous resolution with a theoretic accuracy better than 0.03 m for DEM generation.②The errors in satellite velocity and Doppler centroid had no obvious effect on DEM accuracy and they could be neglected.While the errors in position,baseline,slant range and interferometric phase had a significant effect on DEM accuracy.And the DEM error caused by baseline error was dominated,followed by the slant range error,interferometric phase error and satellite position error.③To obtain an expected DEM accuracy of 2 m,the baseline error must be strictly controlled and its accuracy shall be 1.0 mm or better for Cross-Track and Normal-Direction component,respectively.And the slant range error and interferometric phase error shall be reasonably controlled.The research results were of great significance for accurately grasping the accuracy of LT-1 data products and their errors control,and could provide a scientific auxiliary basis for LT-1 in promoting global SAR technology progress and the generation of high-precision basic geographic data.展开更多
In this paper,a special geometry case of spaceborne-airborne bistatic SAR(SA-BiSAR) is considered,in which satellite and aircraft flight paths are parallel and their antennas are steering at the strip map.This case is...In this paper,a special geometry case of spaceborne-airborne bistatic SAR(SA-BiSAR) is considered,in which satellite and aircraft flight paths are parallel and their antennas are steering at the strip map.This case is a simple but typical application example,which is applicable for non-cooperative illumination.The integration time of SA-BiSAR system is derived via the motion of transmitter and receiver footprint.In parallel and stripmap mode,Doppler frequency is obtained through the combination be-tween spaceborne and airborne SAR.Other Doppler properties have been envisaged,including Doppler bandwidth and azimuth resolution.The overall simulation experiments are conducted and some characteristics are exhibited.The critical parameters,which have the significant effect on the SA-BiSAR Doppler properties,are extracted by analytical expressions and numerical simulations.In parallel and strip map mode and with reference to ENVISAT-1,SA-BiSAR system possesses the potential of yielding 10 m azi-muth resolution and 0.5 s integration time for C-band via the analysis of simulation results.展开更多
In this paper,a focusing approach is presented to widen the use of efficient monostatic imaging algorithms for azimuth-invariant bistatic synthetic aperture radar(SAR) data.The bistatic range history is modeled by a p...In this paper,a focusing approach is presented to widen the use of efficient monostatic imaging algorithms for azimuth-invariant bistatic synthetic aperture radar(SAR) data.The bistatic range history is modeled by a polynomial of azimuth time.Using this model,an analytic form of the signal spectrum in the 2D frequency domain is derived,and a simple single-valued relation between the transmitter and receive ranges is established.In this way,a lot of monostatic image formation algorithms can be extended for the bistatic SAR data,and a bistatic chirp scaling algorithm is developed as an application of the new approach.This algorithm can be used to process the azimuth-invariant bistatic configuration where the transmitter and receiver platforms are moving on parallel tracks with the same velocity.In addition,some simulation results are given to demonstrate the validity of the proposed approach.展开更多
This paper focuses on the jamming problem of bistatic synthetic aperture radar (BiSAR), and a jamming method against BiSAR based on modulation theory is proposed. The proposed jamming method modulates the BiSAR signal...This paper focuses on the jamming problem of bistatic synthetic aperture radar (BiSAR), and a jamming method against BiSAR based on modulation theory is proposed. The proposed jamming method modulates the BiSAR signal with the cosinusoidal phase to generate multi-false targets in range, and further rotates the jammer to generate multi-false targets in azimuth. The range multi-false targets and azimuth multi-false targets form the two-dimensional cover jamming or deception jamming, which can protect the important targets efficiently. The number of false targets, the interval of false targets, and the jamming square can be adjusted flexibly by setting different range jamming parameters and azimuth jamming parameters. The jamming performance and the choosing criteria of jamming parameters are also discussed. Finally, the simulated data verify the effectiveness of the jamming method.展开更多
The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper in...The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper indicates the feasibility of Bistatic Forward-Looking (BFL) SAR imaging. Considering the different Doppler property determined by the two platforms in BFL SAR, a new 2-D point target spectrum is derived in our study. Based on the spectrum, an imaging method is chosen for the configuration, and the point target simulation validates the analysis.展开更多
In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) ...In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) not only depends on the target's two- dimensional location, but also varies with the range location non- linearly. And the nonlinearity is not just the slight deviation from the linear part, but exhibits evident nonlinear departure in the RCM trajectory. If the RCM is not properly corrected, nonlinear image distortions would occur. Based on the RCM model, a modified two-step RCM compensation (RCMC) method for SA-FBSAR is proposed. In this method, firstly the azimuth-dependent RCM is compensated by the scaling Fourier transform and the phase multi- plication. And then the range-dependent RCM is removed through interpolation. The effectiveness of the proposed RCMC method is verified by the simulation results of both point scatterers and area targets.展开更多
In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization m...In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization method. The key of the phase synchronization processing is to extract the oscillator phase differences from the bistatic echoes. A signal model of phase synchronization in the alternating bistatic mode is presented. The phase synchronization processing method is then studied. To reduce the phase errors introduced by SAR imaging, a sub-aperture processing method is proposed. To generalize the sub-aperture processing method, an echo-domain processing method using correlation of bistatic echoes is proposed. Finally, the residual phase errors of the both proposed processing methods are analyzed. Simulation experiments validate the proposed phase synchronization processing method and its phase error analysis results.展开更多
A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion o...A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion of the rigid target.In this system,applying the geometry invariance of the rigid target,the unknown 3D shape and motion of the radar target can be reconstructed from the 1D range data of some scatterers extracted from the high-resolution range image.Compared with the current 1D-to-3D algorithm,in the proposed algorithm,the requirement of the 1D range data is expanded to incomplete formation involving large angular motion of the target and hence,the quantity of the scatterers and the abundance of 3D motion are enriched.Furthermore,with the three selected affine coordinates fixed,the multi-solution problem of the reconstruction is solved and the technique of nonlinear optimization can be successfully utilized in the system.Two simulations are implemented which verify the higher robustness of the system and the better performance of the 3D reconstruction for the radar target with unknown relative motion.展开更多
Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexi...Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexibility of bistatic platforms,resulting in kinds of models built independently among which there could be some similar even the same motion features.Comprehensive research on such systems in a more comprehensive and general point of view is required to address their difference and consistency.Property analysis of bistatic forwardlooking SAR with arbitrary geometry is achieved including stripmap and spotlight modes on airborne platform,missile-borne platform,and hybrid platform of both.Emphasis is placed on azimuth space variance of some key parameters significantly affecting the subsequent imaging processing,based on which the frequency spectra are further described and compared considering respective features of different platforms for frequency imaging algorithm developing.Simulation results confirm the effectiveness and correctness of our analysis.展开更多
For a synthetic aperture radar(SAR) system mounted on a geostationary Earth orbit(GEO) satellite, the track can be curvilinear. Thus, a bistatic SAR system based up on geostationary transmitter and "receive-only...For a synthetic aperture radar(SAR) system mounted on a geostationary Earth orbit(GEO) satellite, the track can be curvilinear. Thus, a bistatic SAR system based up on geostationary transmitter and "receive-only" SAR system onboard airplanes, namely GEO spaceborne-airborne bistatic(GEO SA-Bi SAR), is significantly different from the traditional bistatic SAR. This paper mainly studies the resolution characteristic of the sliding spotlight GEO SA-Bi SAR system. Firstly, the common azimuth coverage and coherent accumulated time are theoretically analyzed in detail. Then,based on the gradient method, the accurate two dimensional resolution of a GEO SA-Bi SAR system is analytically calculated. Finally, the simulation data show the correctness and effectiveness of the proposed resolution analysis method.展开更多
The curvature factor of the parallel-track bistatic SAR is range dependent, even without variation of the effective velocity. Accounting for this new characteristic, a parallel-track chirp scaling algorithm (CSA) is...The curvature factor of the parallel-track bistatic SAR is range dependent, even without variation of the effective velocity. Accounting for this new characteristic, a parallel-track chirp scaling algorithm (CSA) is derived, by introducing the method of removal of range walk (RRW) in the time domain. Using the RRW before the CSA, this method can reduce the varying range of the curvature factor, without increasing the computation load obviously. The azimuth dependence of the azimuth-FM rate, resulting from the RRW, is compensated by the nonlinear chirp scaling factor. Therefore, the algorithm is extended into stripmap imaging. The realization of the method is presented and is verified by the simulation results.展开更多
This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic ap...This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar(SAR) interferometry. The study of temporal decorrelation is challenging, especially for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry configuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model.The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.展开更多
This paper focuses on the general case (GC) airborne bistatic synthetic aperture radar (SAR) data processing, and a new analytical imaging algorithm based on the extended Loffeld's bistatic formula (ELBF) is pr...This paper focuses on the general case (GC) airborne bistatic synthetic aperture radar (SAR) data processing, and a new analytical imaging algorithm based on the extended Loffeld's bistatic formula (ELBF) is proposed. According to the bistatic SAR geometry, the track decoupling formulas that convert the bistatic geometry to the receiver-referenced geometry in a concise way are derived firstly. Then phase terms of ELBF are decomposed into two independent phase terms as the range phase term and the azimuth phase term in a new way. To get the focusing result, the bistatic deformation (BD) term is compensated in the two-dimensional (2- D) frequency domain, and the space-variances of the range phase term and the azimuth phase term are eliminated by chirp scaling (CS) and chirp z-transform (CZT), respectively. The effectiveness of the proposed algorithm is verified by the simulation results.展开更多
An approach based on interferometry technique is proposed for three-dimensional (3D) bistatic inverse synthetic aperture radar (ISAR) imaging. It is converted to a monostatic problem by using the theory that a bis...An approach based on interferometry technique is proposed for three-dimensional (3D) bistatic inverse synthetic aperture radar (ISAR) imaging. It is converted to a monostatic problem by using the theory that a bistatic radar equals a monostatic radar located on the bisector of bistatic an- gle. Then, interferometric phases extracted from a pair of cross shaped antennas are used to esti- mate the height and associated rotational velocity. Finally, numerical simulations are provided to e- valuate this method.展开更多
Low frequency ultrawideband (LF UWB) synthetic aperture radar (SAR) has lately become of a particular interest to SAR community. Monostatic and bistatic LF UWB SAR system has the well foliage penetrating capability, h...Low frequency ultrawideband (LF UWB) synthetic aperture radar (SAR) has lately become of a particular interest to SAR community. Monostatic and bistatic LF UWB SAR system has the well foliage penetrating capability, high-resolution imaging and providing the increased information. In 2015, a monostatic and bistatic LF UWB SAR imaging experiment was conducted. In this experiment, the monostatic and bistatic data were collected simultaneously by operating a moving vehicle-based radar in the SAR mode, in conjunction with a stationary ground-based receiver. The aim was to investigate the imaging property of the bistatic LF UWB SAR system. The one pulse per second (1 PPS) signal in combination with the global position system (GPS) disciplined 100 MHz oscillator from the GPS receivers was used to implement the time and frequency synchronization in this SAR system. The bistatic SAR image was obtained by the subaperture spectrum-equilibrium method integrated with the fast factorized back projection (FFBP) algorithm. Bistatic experiment results are show to prove the validity of the bistatic LF UWB SAR imaging experiment.展开更多
文摘To compensate motion errors of images from the parallel-track bistatic synthetic aperture radar(BiSAR),an improved chirp scaling algorithm(CSA) is proposed.Since velocity vector of the moving aircrafts in the parallel-track BiSAR system can not remain invariant in an aperture,an actual aperture is divided into subapertures so that it is reasonable to assume that the aircrafts move with constant acceleration vector in a subaperture.Based on this model,an improved CSA is derived.The new phase factors incorporate three-dimensional acceleration and velocity.The motion compensation procedure is integrated into the CSA without additional operation required.The simulation results show that the presented algorithm can efficiently resolve motion compensation for parallel-track BiSAR.
基金supported by the National Natural Science Foundation of China under Grant No.6147088the Natural Sciences and Engineering Research Council of Canada-Discovery Grant Program
文摘In this paper, we propose a simplified spatial channel sounding method by utilizing bistatic synthetic aperture radar(BiSAR) principles. Despite the different deployment geometries compared with a conventional BiSAR system, the feasibility of the approach is established by 1) the proposed method achieves a better spatial resolution than conventional directional channel sounders and 2) reconstruction algorithms based on time-domain backprojection in conjunction with a digital elevation model provide a good imaging performance and are suitable for reconstructing the spatial distribution of scatterers. Simulations of a high-speed rail(HSR) scenario demonstrate that the estimated power delay profiles(PDPs) and power angle profiles(PAPs) are close to the actual values.
基金the Ministerial Level Advanced Research Foundation(404050301 .4)
文摘A new method is presented to improve guidance precision. This method is based on bistatic synthetic aperture radar. The illuminator works in side looking mode, providing the synthetic aperture and the receiver is disposed on the seeker which operates in the forward looking mode. The receiving antenna is composed of four sub-antennas and so four synthetic aperture radar (SAR) images are to be generated. Target is positioned in SAR images by image matching. The bearing and elevation of image element of target are measured by the principle of monopulse angular measurement. Theory of the proposed method is derived and simulation on bearing measurement is done. Simulation shows that the method is valid and if SNR of target's image is above 30 dB, the angular measuring difference is within the confines of 0.04 degree.
基金National Science Fund for Distinguished Young Scholars(No.41925016)National Natural Science Foundation of China(No.41804008)National Key Research and Development Program of China(No.2018YFC1503603)。
文摘LuTan-1(LT-1)is a constellation with two full-polarization L-band radar satellites designed by China,and the first satellite was scheduled to be launched in December 2021 and the second one in January 2022.The LT-1 will be operated for deformation monitoring in repeat-pass mode,and for DEM generation in bistatic mode,improving self-sufficiency of SAR data for the field of geology,earthquake,disaster reduction,geomatics,forestry and so on.In this paper,we focused on designing an algorithm for interferometric DEM generation using LT-1 bistatic satellites.The basic principle,main error sources and errors control of the DEM generation algorithm of LT-1 were systematically analyzed.The experiment results demonstrated that:①The implemented algorithm had rigorous resolution with a theoretic accuracy better than 0.03 m for DEM generation.②The errors in satellite velocity and Doppler centroid had no obvious effect on DEM accuracy and they could be neglected.While the errors in position,baseline,slant range and interferometric phase had a significant effect on DEM accuracy.And the DEM error caused by baseline error was dominated,followed by the slant range error,interferometric phase error and satellite position error.③To obtain an expected DEM accuracy of 2 m,the baseline error must be strictly controlled and its accuracy shall be 1.0 mm or better for Cross-Track and Normal-Direction component,respectively.And the slant range error and interferometric phase error shall be reasonably controlled.The research results were of great significance for accurately grasping the accuracy of LT-1 data products and their errors control,and could provide a scientific auxiliary basis for LT-1 in promoting global SAR technology progress and the generation of high-precision basic geographic data.
文摘In this paper,a special geometry case of spaceborne-airborne bistatic SAR(SA-BiSAR) is considered,in which satellite and aircraft flight paths are parallel and their antennas are steering at the strip map.This case is a simple but typical application example,which is applicable for non-cooperative illumination.The integration time of SA-BiSAR system is derived via the motion of transmitter and receiver footprint.In parallel and stripmap mode,Doppler frequency is obtained through the combination be-tween spaceborne and airborne SAR.Other Doppler properties have been envisaged,including Doppler bandwidth and azimuth resolution.The overall simulation experiments are conducted and some characteristics are exhibited.The critical parameters,which have the significant effect on the SA-BiSAR Doppler properties,are extracted by analytical expressions and numerical simulations.In parallel and strip map mode and with reference to ENVISAT-1,SA-BiSAR system possesses the potential of yielding 10 m azi-muth resolution and 0.5 s integration time for C-band via the analysis of simulation results.
基金the National High Technology Research and Development Program (863) of China(No. 2008AA12Z108)
文摘In this paper,a focusing approach is presented to widen the use of efficient monostatic imaging algorithms for azimuth-invariant bistatic synthetic aperture radar(SAR) data.The bistatic range history is modeled by a polynomial of azimuth time.Using this model,an analytic form of the signal spectrum in the 2D frequency domain is derived,and a simple single-valued relation between the transmitter and receive ranges is established.In this way,a lot of monostatic image formation algorithms can be extended for the bistatic SAR data,and a bistatic chirp scaling algorithm is developed as an application of the new approach.This algorithm can be used to process the azimuth-invariant bistatic configuration where the transmitter and receiver platforms are moving on parallel tracks with the same velocity.In addition,some simulation results are given to demonstrate the validity of the proposed approach.
基金supported by the National Defense Pre-research Program during the 13th Five-Year Plan(30603050303 301020302)
文摘This paper focuses on the jamming problem of bistatic synthetic aperture radar (BiSAR), and a jamming method against BiSAR based on modulation theory is proposed. The proposed jamming method modulates the BiSAR signal with the cosinusoidal phase to generate multi-false targets in range, and further rotates the jammer to generate multi-false targets in azimuth. The range multi-false targets and azimuth multi-false targets form the two-dimensional cover jamming or deception jamming, which can protect the important targets efficiently. The number of false targets, the interval of false targets, and the jamming square can be adjusted flexibly by setting different range jamming parameters and azimuth jamming parameters. The jamming performance and the choosing criteria of jamming parameters are also discussed. Finally, the simulated data verify the effectiveness of the jamming method.
基金Supported by the National Natural Science Foundation of China (No. 61071165)the Aviation Science Foundation (No. 20102052024)
文摘The bistatic Synthetic Aperture Radar (SAR) systems with separate transmitter and receiver antennas provide a new potential to imaging in the forward-looking geometry. Analysis of the Doppler property in this paper indicates the feasibility of Bistatic Forward-Looking (BFL) SAR imaging. Considering the different Doppler property determined by the two platforms in BFL SAR, a new 2-D point target spectrum is derived in our study. Based on the spectrum, an imaging method is chosen for the configuration, and the point target simulation validates the analysis.
基金supported by the National Natural Science Foundation of China (61102143)the Fundamentl Research Funds for the Central Universities (ZYGX2011x003)
文摘In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) not only depends on the target's two- dimensional location, but also varies with the range location non- linearly. And the nonlinearity is not just the slight deviation from the linear part, but exhibits evident nonlinear departure in the RCM trajectory. If the RCM is not properly corrected, nonlinear image distortions would occur. Based on the RCM model, a modified two-step RCM compensation (RCMC) method for SA-FBSAR is proposed. In this method, firstly the azimuth-dependent RCM is compensated by the scaling Fourier transform and the phase multi- plication. And then the range-dependent RCM is removed through interpolation. The effectiveness of the proposed RCMC method is verified by the simulation results of both point scatterers and area targets.
基金supported by the National Natural Science Foundation of China(6100203161101187)
文摘In the distributed synthetic aperture radar (SAR), the alternating bistatic mode can perform phase reference without a synchronization link between two satellites compared with the pulsed alternate synchronization method. The key of the phase synchronization processing is to extract the oscillator phase differences from the bistatic echoes. A signal model of phase synchronization in the alternating bistatic mode is presented. The phase synchronization processing method is then studied. To reduce the phase errors introduced by SAR imaging, a sub-aperture processing method is proposed. To generalize the sub-aperture processing method, an echo-domain processing method using correlation of bistatic echoes is proposed. Finally, the residual phase errors of the both proposed processing methods are analyzed. Simulation experiments validate the proposed phase synchronization processing method and its phase error analysis results.
基金supported by the National Natural Science Foundation of China (60572093)the Doctoral Program of Higher Education(20050004016)the Outstanding Doctoral Science Innovation Foundation of Beijing Jiaotong University (141095522)
文摘A 3D motion and geometric information system of single-antenna radar is proposed,which can be supported by spotlight synthetic aperture radar(SAR) system and inverse SAR(ISAR) system involving relative 3D motion of the rigid target.In this system,applying the geometry invariance of the rigid target,the unknown 3D shape and motion of the radar target can be reconstructed from the 1D range data of some scatterers extracted from the high-resolution range image.Compared with the current 1D-to-3D algorithm,in the proposed algorithm,the requirement of the 1D range data is expanded to incomplete formation involving large angular motion of the target and hence,the quantity of the scatterers and the abundance of 3D motion are enriched.Furthermore,with the three selected affine coordinates fixed,the multi-solution problem of the reconstruction is solved and the technique of nonlinear optimization can be successfully utilized in the system.Two simulations are implemented which verify the higher robustness of the system and the better performance of the 3D reconstruction for the radar target with unknown relative motion.
基金supported by the National Natural Science Foundation of China(6100121161303035+1 种基金61471283)the Fundamental Research Funds for the Central Universities(K5051202016)
文摘Bistatic forward-looking synthetic aperture radar(SAR) has many advantages and applications owing to its twodimensional imaging capability.There could be various imaging configurations because of the geometric flexibility of bistatic platforms,resulting in kinds of models built independently among which there could be some similar even the same motion features.Comprehensive research on such systems in a more comprehensive and general point of view is required to address their difference and consistency.Property analysis of bistatic forwardlooking SAR with arbitrary geometry is achieved including stripmap and spotlight modes on airborne platform,missile-borne platform,and hybrid platform of both.Emphasis is placed on azimuth space variance of some key parameters significantly affecting the subsequent imaging processing,based on which the frequency spectra are further described and compared considering respective features of different platforms for frequency imaging algorithm developing.Simulation results confirm the effectiveness and correctness of our analysis.
基金supported by the National Natural Science Foundation of China(61271342)
文摘For a synthetic aperture radar(SAR) system mounted on a geostationary Earth orbit(GEO) satellite, the track can be curvilinear. Thus, a bistatic SAR system based up on geostationary transmitter and "receive-only" SAR system onboard airplanes, namely GEO spaceborne-airborne bistatic(GEO SA-Bi SAR), is significantly different from the traditional bistatic SAR. This paper mainly studies the resolution characteristic of the sliding spotlight GEO SA-Bi SAR system. Firstly, the common azimuth coverage and coherent accumulated time are theoretically analyzed in detail. Then,based on the gradient method, the accurate two dimensional resolution of a GEO SA-Bi SAR system is analytically calculated. Finally, the simulation data show the correctness and effectiveness of the proposed resolution analysis method.
基金supported by the National Natural Science Foundation of China (60572151)the Ministry of EducationKey Project (103154).
文摘The curvature factor of the parallel-track bistatic SAR is range dependent, even without variation of the effective velocity. Accounting for this new characteristic, a parallel-track chirp scaling algorithm (CSA) is derived, by introducing the method of removal of range walk (RRW) in the time domain. Using the RRW before the CSA, this method can reduce the varying range of the curvature factor, without increasing the computation load obviously. The azimuth dependence of the azimuth-FM rate, resulting from the RRW, is compensated by the nonlinear chirp scaling factor. Therefore, the algorithm is extended into stripmap imaging. The realization of the method is presented and is verified by the simulation results.
基金supported by the National Natural Science Foundation of China(6110117861271441)
文摘This paper develops a temporal decorrelation model for the bistatic synthetic aperture radar(BSAR) interferometry. The temporal baseline is one of the important decorrelation sources for the repeat-pass synthetic aperture radar(SAR) interferometry. The study of temporal decorrelation is challenging, especially for the bistatic configuration, since temporal decorrelation is related to the data acquisition geometry. To develop an appropriate theoretical model for BSAR interferometry, the existing models for monostatic SAR cases are extended, and the general BSAR geometry configuration is involved in the derivation. Therefore, the developed temporal decorrelation model can be seen as a general model.The validity of the theoretical model is supported by Monte Carlo simulations. Furthermore, the impacts of the system parameters and BSAR geometry configurations on the temporal decorrelation model are discussed briefly.
文摘This paper focuses on the general case (GC) airborne bistatic synthetic aperture radar (SAR) data processing, and a new analytical imaging algorithm based on the extended Loffeld's bistatic formula (ELBF) is proposed. According to the bistatic SAR geometry, the track decoupling formulas that convert the bistatic geometry to the receiver-referenced geometry in a concise way are derived firstly. Then phase terms of ELBF are decomposed into two independent phase terms as the range phase term and the azimuth phase term in a new way. To get the focusing result, the bistatic deformation (BD) term is compensated in the two-dimensional (2- D) frequency domain, and the space-variances of the range phase term and the azimuth phase term are eliminated by chirp scaling (CS) and chirp z-transform (CZT), respectively. The effectiveness of the proposed algorithm is verified by the simulation results.
文摘An approach based on interferometry technique is proposed for three-dimensional (3D) bistatic inverse synthetic aperture radar (ISAR) imaging. It is converted to a monostatic problem by using the theory that a bistatic radar equals a monostatic radar located on the bisector of bistatic an- gle. Then, interferometric phases extracted from a pair of cross shaped antennas are used to esti- mate the height and associated rotational velocity. Finally, numerical simulations are provided to e- valuate this method.
文摘Low frequency ultrawideband (LF UWB) synthetic aperture radar (SAR) has lately become of a particular interest to SAR community. Monostatic and bistatic LF UWB SAR system has the well foliage penetrating capability, high-resolution imaging and providing the increased information. In 2015, a monostatic and bistatic LF UWB SAR imaging experiment was conducted. In this experiment, the monostatic and bistatic data were collected simultaneously by operating a moving vehicle-based radar in the SAR mode, in conjunction with a stationary ground-based receiver. The aim was to investigate the imaging property of the bistatic LF UWB SAR system. The one pulse per second (1 PPS) signal in combination with the global position system (GPS) disciplined 100 MHz oscillator from the GPS receivers was used to implement the time and frequency synchronization in this SAR system. The bistatic SAR image was obtained by the subaperture spectrum-equilibrium method integrated with the fast factorized back projection (FFBP) algorithm. Bistatic experiment results are show to prove the validity of the bistatic LF UWB SAR imaging experiment.