The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant...The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice.展开更多
Black carbon(BC)in snow plays an important role to accelerate snow melting.However,current studies mostly focused on BC concentrations,few on their size distributions in snow which affected BC’s effect on albedo chan...Black carbon(BC)in snow plays an important role to accelerate snow melting.However,current studies mostly focused on BC concentrations,few on their size distributions in snow which affected BC’s effect on albedo changes.Here we presented refractory BC(rBC)concentrations and size distributions in snow collected from Chinese Altai Mountains in Central Asia from November 2016 to April 2017.The results revealed that the average rBC concentrations were 5.77 and2.82 ng g-1for the surface snow and sub-surface snow,which were relatively higher in the melting season(April)than that in winter(November-January).The mass median volume-equivalent diameter of rBC size in surface snow was approximately at 120-150 nm,which was typically smaller than that in the atmosphere(about 200 nm for urban atmosphere).However,there existed no specific mass median volume-equivalent diameter of BC size for sub-surface snow in winter.While during the melting season,the median mass size of rBC in sub-surface snow was similar to that in surface snow.Backward trajectories indicated that anthropogenic sourced BC dominated rBC in snow(70%-85%).This study will promote our understanding on BC size distributions in snow,and highlight the possible impact of BC size on climate effect.展开更多
Black carbon(BC)is the strongest visible-light-absorbing aerosol component in the atmosphere,with a sig-nificant impact on Earth’s radiative budget.Accurate measurement of BC light absorption is crucial for estimatin...Black carbon(BC)is the strongest visible-light-absorbing aerosol component in the atmosphere,with a sig-nificant impact on Earth’s radiative budget.Accurate measurement of BC light absorption is crucial for estimating its radiative effect.The micro-aethalometer model 200(MA200)by AethLabs,USA,offers high-time-resolution measurement of the multi-wavelength absorption coefficient(σ_(ab))within 1 s,making it widely used in aerial measurement due to its compact size and light weight.However,the reliability of the measuredσ_(ab) has not been extensively studied in previous research.In this study,we evaluate the performance of MA200 by comparingσ_(ab) measurements obtained from MA200 with those from the aethalometer model 33(AE33)by Magee,USA.Our results revealed a significant variation in the determinant coefficient(R 2)betweenσ_(ab) measurements from MA200 and AE33,depending on the time resolution.The R 2 increases from 0.1 to 0.5 and further to 0.97 as the time resolution of σ_(ab) increases from 1 s to 30 s and 60 s,respectively.We recommend a minimum time resolution of 30 s for stableσ_(ab) measurements using MA200.Moreover,we determineσ_(ab) from attenuation coefficient(σ_(ATN))measured by MA200 asσ_(ab)=(σ_(ATN)-σ_(0))/C_( MA),whereσ_(0 )ranges from-15.3 Mm-1 to-6.4 Mm-1 and C MA ranges from 2.65 to 3.21.Correcting the measuredσ_(ab) based on the findings of this study can provide reliable results for estimating the radiative effects of BC.展开更多
As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the trans...As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the transport model of BC aerosols has also been established and combined with the RIEMS model. Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.展开更多
A study of the concentration of black carbon particles and its variation in the urban atmosphere has been carried out since 1996 in the Beijing area. The measurements were done in the late autumn and early winter each...A study of the concentration of black carbon particles and its variation in the urban atmosphere has been carried out since 1996 in the Beijing area. The measurements were done in the late autumn and early winter each year, the period before and after domestic heating activities begin. The results show the presence of black carbon particles at the high level that vary over a large range in the urban atmosphere in Beijing. The mean value of daily average concentration for the whole observation period of 1996-2004 is 20.0 μgm^-3. An evident decrease of black carbon particle concentration in the Beijing area is observed after 2000, and the daily average concentration of black carbon particles is estimated to be 16.0 μgm^-3 with a variation range of 2.10-50.50 μgm^-3 for the period of 2000-2004. The observation method and main variation behavior characteristics of black carbon particles in the urban atmosphere in the Beijing area are given and discussed.展开更多
This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (EPAH) in the surface sediments of China's marginal seas. BC content ranges from 〈0.1...This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (EPAH) in the surface sediments of China's marginal seas. BC content ranges from 〈0.10 to 2.45 mg/g dw (grams dry weight) in the sediments studied, and varied among the different coastal regions. The Bohai Bay sediments had the highest BC contents (average 2.18 mg/g dw), which comprises a significant fraction (27%-41%) of the total organic carbon (TOC) preserved in the sediments. In comparison, BC in the surface sediments of the North Yellow Sea, Jiaozhou Bay, East China Sea and the South China Sea is less abundant and accounted for an average of 6%, 8%, 14% and 5%, respectively, of the sedimentary organic carbon pool. The concentration of EPAH in the surface sediments ranges from 41 to 3 667 ng/g dw and showed large spatial variations among the sampling sites of different costal regions. The Bohai Bay has the highest ZPAH values, ranging from 79 to 3 667 ng/g dw. This reflects the high anthropogenically contaminated nature of the sediments in the bay. BC is positively correlated to TOC but a strong correlation is not found between BC and ZPAH in the surface sediments studied, suggesting that BC and PAHs preserved in the sediments are derived from different sources and controlled by different biogeochemical processes. Our study suggests that the abundance of BC preserved in the sediments could represent a significant sink pool of carbon cycling in China's marginal seas.展开更多
The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy field was continuou...The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy field was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha^-1 yr^-1; P, 45 kg triple superphosphate-P205 ha^-1 yr^-1; K, 75 kg potassium chloride-K20 ha^-1 yr^-1; and pig manure, 22 500 kg ha^-1 yr^-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was significantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no significant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was significantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not significantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and significantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was significantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not significantly correlated with one another. No significant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.展开更多
The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGC...The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGCM2.0.1) developed by the National Climate Center(NCC) of the China Meteorological Administration(CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m 2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m 2.The global annual mean surface temperature increased 0.071 C due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter(spring) increased by 0.83 C(0.6 C) and 0.83 C(0.46 C),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic.However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.展开更多
In this study the authors apply the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to examine the impacts of black carbon (BC)-induced changes in snow albedo on simulated temperature an...In this study the authors apply the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to examine the impacts of black carbon (BC)-induced changes in snow albedo on simulated temperature and precipitation during the severe snowstorm that occurred in southern China during 0800 26 January to 0800 29 January 2008 (Note that all times are local time except when otherwise stated). Black carbon aerosol was simulated online within the WRF-Chem. The model resuits showed that surface-albedo, averaged over 27-28 January, can be reduced by up to 10% by the deposition of BC. As a result, relative to a simulation that does not consider deposition of BC on snow/ice, the authors predicted surface air temperatures during 27-28 January can differ by -1.95 to 2.70 K, and the authors predicted accumulated precipitation over 27-28 January can differ by -2.91 to 3.10 mm over Areas A and B with large BC deposition. Different signs of changes are determined by the feedback of clouds and by the availability of water vapor in the atmosphere.展开更多
The remote response of the East Asian summer monsoon (EASM) to European black carbon (EUBC) aerosols was studied by using an ensemble of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFD...The remote response of the East Asian summer monsoon (EASM) to European black carbon (EUBC) aerosols was studied by using an ensemble of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AGCM) Atmospheric Model version 2.1 (AM2.1).The results show that EUBC causes an enhanced EASM.The resulted enhanced southwesterly brings more moisture supply from the Bay of Bengal,which causes an increase in precipitation over the Yangtze River valley,northeastem China,the eastern part of the Yellow River valley,and the Tibetan Plateau.Diagnostic examination suggests that EUBC induces enhanced tropospheric heating over most of the Eurasian Continent through a propagating wave train and horizontal air temperature advection.This phenomenon results in intensified thermal contrast between land and ocean,which accounts for the enhanced EASM.Moreover,reductions in EUBC emission in 1992 may have contributed to decadal weakening of the EASM in the early 1990s.展开更多
The authors quantify the radiative effect of black carbon (BC) on simulated aerosol concentrations during the heavily polluted haze event of 11-14 January 2013 in northern China using the chemistry version of the We...The authors quantify the radiative effect of black carbon (BC) on simulated aerosol concentrations during the heavily polluted haze event of 11-14 January 2013 in northern China using the chemistry version of the Weather Research and Forecasting Model (WRF-Chem). As a result of the stable synoptic conditions, simulated concentrations of BC and PM2.5 averaged over the study period were about 8-16 μg m-3 and 80-100 μg m-3, respectively, in the control simulation (CTRL). When BC emissions were doubled (2BC), tripled (3BC), and quad- rupled (4BC) relative to the CTRL run, the simulated concentrations of aerosols in different regions showed distinct changes. The radiative effect of BC was simulated to increase concentrations of aerosols over Tianjin (Doml) and southern Henan (Dora3), but to decrease in southern Hebei (Dora2). Relative to the CTRL simulation, concen- trations of PM2s over Doml, Dom2, and Dom3 were simulated in 4BC to change by +18.6 1μg m-3 (+32.3%), -5.7 μg m 3 (-7.3%), and +7.2 μg m3 (+12.6%), respec- tively. The BC-induced increases in aerosol concentra- tions corresponded mainly to the reductions in planetary boundary layer height over Doml and Dom3. The reduc- tions of aerosol concentrations in Dora2 were mainly caused by the weakened wind convergence at 850 hPa and reduced concentrations of sulfate and nitrate associ- ated with the reduced surface-layer ozone levels and rela- tive humidity.展开更多
Black carbon(BC)has received increasing attention in the last 20 years because it is not only an absorbent of toxic pollutants but also a greenhouse substance,preserving fire-history records,and more importantly,actin...Black carbon(BC)has received increasing attention in the last 20 years because it is not only an absorbent of toxic pollutants but also a greenhouse substance,preserving fire-history records,and more importantly,acting as an indicator of biogeochemical cycles and global changes.By adopting an improved chemothermal oxidation method(WXY),this study reconstructed the century-scale high-resolution records of BC deposition from two fine-grained sediment cores collected from the Yellow Sea Cold Water Mass in the South Yellow Sea.The BC records were divided into five stages,which exhibited specific sequences with three BC peaks at approximately 1891,1921,and 2007 AD,representing times at which the first heavy storms appeared just after the termination of long-term droughts.The significant correlation between the times of the BC peaks in the cores and heavy storms in the area of the Huanghe(Yellow)River demonstrated that BC peaks could result from markedly strengthened sedimentation due to surface runof f,which augmented the atmospheric deposition.Stable carbon isotope analysis indicated that the evident increase in carbon isotope ratios of BC in Stage 5 might have resulted from the input of weathered rock-derived graphitic carbon cardinally induced by the annual anthropogenic modulation of water-borne sediment in the Huanghe River since 2005 AD.Numerical calculations demonstrated that the input fraction of graphitic carbon was 22.97% for Stage 5,whereas no graphitic carbon entered during Stages 1 and 3.The obtained data provide new and important understanding of the source-sink history of BC in the Yellow Sea.展开更多
Black carbon(BC)has a significant impact on air quality and atmospheric light absorption due to its unique physical properties.In this study,a ten-wavelength black carbon monitor was used to measure BC concentrations ...Black carbon(BC)has a significant impact on air quality and atmospheric light absorption due to its unique physical properties.In this study,a ten-wavelength black carbon monitor was used to measure BC concentrations continuously during winter in urban Beijing.A comparison of BC concentrations was carried out between the ten-wavelength black carbon monitor and a multiangle absorption photometer(MAAP)and a thermal optical transmission method carbon analyzer.The results showed significant correlations between BC measured by the MAAP,the thermal optical transmission method carbon analyzer and BC measured at the 660 nm wavelength using the ten-wavelength black carbon monitor.Obvious differences in BC concentrations were recorded at the different wavelength ranges.The BC concentrations observed in the visible ranges,near-infrared ranges and near-ultraviolet ranges were on average 3.1,2.6,and 4.6μg m?3,respectively.The differences between the absorption coefficient of BC370 nm and BC880 nm increased with the enhancement of OC:TC(ratio of organic carbon to total carbon)and PM2.5,indicating that organic matter had strong light absorption at near-ultraviolet wavelength.BC concentrations had clear diurnal variations with maxima at 0300 and minima at 1400(Local time).In addition,potential contribution source areas of BC were also analyzed.This is the first time that BC measurements have been conducted using the ten-wavelength BC monitor,which provided more information of BC at different wavelengths compared to other methods.展开更多
This study characterizes the black carbon in Agra, India home to the Taj Mahal--and situated in the lndo-Gangetic basin. The mean black carbon concentration is 9.5 μg m-3 and, owing to excessive biomass/fossil fuel c...This study characterizes the black carbon in Agra, India home to the Taj Mahal--and situated in the lndo-Gangetic basin. The mean black carbon concentration is 9.5 μg m-3 and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter (December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate (1-2 m s-1) wind speed, as compared to calm or turbulent atmospheric conditions.展开更多
Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley...Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley and prolonged drought in North China.The other shift occurred in the early 1990s and featured increased rainfall in South China.The role of black carbon(BC) aerosol in the first shift event is controversial,and it has not been documented for the second event.In this study,the authors used Geophysical Fluid Dynamics Laboratory's(GFDL's) atmospheric general circulation model known as Atmosphere and Land Model(AM2.1) ,which has been shown to capture East Asian climate variability well,to investigate these issues by conducting sensitive experiments with or without historical BC in East Asia. The results suggest that the model reproduces the first shift well,including intensified rainfall in the Yangtze River and weakened monsoonal circulation.However,the model captures only a fraction of the observed variations for the second shift event.Thus,the role of BC in modulating the two shift events is different,and its impact is relatively less important for the early 1990s event.展开更多
Black carbon (BC) can strongly adsorb hydrophobic organic compounds (HOCs). The HOC sorption to coated BC could be attenuated in soil and sediment compared with that of the parent BC. To study the potential causes...Black carbon (BC) can strongly adsorb hydrophobic organic compounds (HOCs). The HOC sorption to coated BC could be attenuated in soil and sediment compared with that of the parent BC. To study the potential causes of the sorption attenuation, humic acid (HA) and BC were isolated. Phenanthrene (PHE) was selected as the representative of HOCs. BC was coated with the precipitated HA. The PHE sorption to the HA-coated BC was determined. The HA coatings on BC could result in the significant sorption attenuation of PHE to BC. The attenuation varied in different HA origin and was positively correlated to the aromaticity of HA. The attenuation could be explained by the direct competition between HA and PHE for the available sorption sites on BC and the reduction of the available sorption sites as a result of the pore blockage of BC caused by the HA coatings. Therefore, the HA coatings on BC was one potential cause of the attenuation of HOC sorption to BC in soil and sediment.展开更多
Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse ef fects on human activities.Organic carbon in marine sediments is an indispensable part of the globa...Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse ef fects on human activities.Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling.Evaluating such a reservoir calls for quantitative studies of marine carbon burial,which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences.However,the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties,i.e.,(1)a very limited amount of each subsample versus the diverse analytical items,(2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data,and(3)a large number of subsamples versus the rapid batch measurements.In this work,(i)adopting the customized disposable ceramic crucibles with the microporecontrolled ability,(ii)developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization,and(iii)optimizing procedures and carbon-sulfur analyzer,we have built a novel Wang-Xu-Yuan method(the WXY method)for measuring the contents of total organic carbon or black carbon in marine sediment cores,which includes the procedures of pretreatment,weighing,acidification,chemothermal oxidation and quantification;and can fully meet the requirements of establishing their highresolution temporal sequences,whatever in the recovery,experimental efficiency,accuracy and reliability of the measurements,and homogeneity of samples.In particular,the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario,which further results in the very high recovery rates for total organic carbon and black carbon.This new technique may provide a significant support for revealing the mechanism of carbon burial and evaluating the capacity of marine carbon accumulation and sequestration.展开更多
Black carbon(BC)reduces the photolysis coefficient by absorbing solar radiation,thereby affecting the concentration of ozone(O_(3))near the ground.The influence of BC on O_(3)has thus received much attention.In this s...Black carbon(BC)reduces the photolysis coefficient by absorbing solar radiation,thereby affecting the concentration of ozone(O_(3))near the ground.The influence of BC on O_(3)has thus received much attention.In this study,Mie scattering and the tropospheric Ultraviolet and Visible radiation model are used to analyze the effect of BC optical properties on radiation.Combined with data of O_(3)precursors in Nanjing in 2014,an EKMA curve is drawn,and the variations in O_(3)concentration are further investigated using a zero-dimensional box mechanism model(NCAR MM).When O_(3)precursors are unchanged,radiation and O_(3)show a highly similar tendency in response to changing BC optical properties(R=0.997).With the increase of modal radius,the attenuation of fresh BC to radiation and O_(3)first trends upward before decreasing.In the mixing process,the attenuation of BC to radiation and O_(3)presents an upward tendency with the increase of relative humidity but decreases rapidly before increasing slowly with increasing thickness of coating.In addition,mass concentration is another major factor.When the BC to PM_(2.5)ratio increases to 5%in Nanjing,the radiation decreases by approximately 0.13%-3.71%while O_(3)decreases by approximately 8.13%-13.11%.The radiative effect of BC not only reduces O_(3)concentration but also changes the EKMA curve.Compared with the NO_(x)control area,radiation has a significant influence on the VOCs control area.When aerosol optical depth(AOD)increases by 17.15%,the NO_(x)to VOCs ratio decreases by 8.27%,and part of the original NO_(x)control area is transferred to the VOCs control area.展开更多
Black carbon(BC)is one of the short-lived air pollutants that contributes significantly to aerosol radiative forcing and global climate change.It is emitted by the incomplete combustion of fossil fuels,biofuels,and bi...Black carbon(BC)is one of the short-lived air pollutants that contributes significantly to aerosol radiative forcing and global climate change.It is emitted by the incomplete combustion of fossil fuels,biofuels,and biomass.Urban environments are quite complex and thus,the use of mobile jointly with fixed monitoring provides a better understanding of the dynamics of BC distribution in such areas.The present study addresses the measurement of BC concentration using real-time mobile and ambient monitoring in Barranquilla,an industrialized urban area of the Colombian Caribbean.A microaethalometer(MA200)and an aethalometer(AE33)were used for measuring the BC concentration.The absorption Ångström exponent(AAE)values were determined for the study area,for identifying the BC emission sources.The results of the ambient sampling show that vehicle traffic emissions prevail;however,the influence of biomass burning was also observed.The mean ambient BC concentration was found to be 1.04±1.03μg/m^(3) and varied between 0.5 and 4.0μg/m^(3).From the mobile measurements obtained in real traffic conditions on the road,a much higher average value of 16.1±16.5μg/m^(3) was measured.Many parts of the city showed BC concentrations higher than 20μg/m^(3).The spatial distribution of BC concentration shows that vehicle emissions and traffic jams,a consequence of road and transport infrastructure,are the factors that most affect the BC concentration.A comparison of results obtained from two aethalometers indicates that the concentrations measured by MA200 are 9%lower than those measured by AE33.The AAE obtained was found to vary between 1.1 and 1.6,indicating vehicular emissions as the most crucial source.In addition,it was observed that the BC concentration on working days was 2.5 times higher than on the weekends in the case of mobile monitoring and 1.5 times higher in the case of ambient monitoring.展开更多
Black carbon(BC)is considered the second largest anthropogenic climate forcer,but the radiative effects of BC are highly correlated with its combustion sources.On-road vehicles are an important source of anthropogenic...Black carbon(BC)is considered the second largest anthropogenic climate forcer,but the radiative effects of BC are highly correlated with its combustion sources.On-road vehicles are an important source of anthropogenic BC.However,there are major uncertainties in the estimates of the BC emissions from on-road light-duty passenger vehicles(LDPVs),and results obtained with the portable emissions measurement system(PEMS)method are particularly lacking.We developed a PEMS platform and evaluated the on-road BC emissions from ten in-use LDPVs.We demonstrated that the BC emission factors(EFs)of gasoline direction injection(GDI)engine vehicles range from 1.10 to 1.56 mg.km^(-1),which are higher than the EFs of port fuel injection(PFI)engine vehicles(0.10–0.17 mg.km^(-1))by a factor of 11.The BC emissions during the cold-start phase contributed 2%–33%to the total emissions.A strong correlation(R^(2)=0.70)was observed between the relative BC EFs and average vehicle speed,indicating that traffic congestion alleviation could effectively mitigate BC emissions.Moreover,BC and particle number(PN)emissions were linearly correlated(R^(2)=0.90),and compared to PFI engine vehicles,the instantaneous PN-to-BC emission rates of GDI engine vehicles were less sensitive to vehicle specific power-to-velocity(VSPV)increase in all speed ranges.展开更多
基金supported by the National Key Research and Development Program(Grant nos.2022YFC2807203,2022YFB2302701).
文摘The rapid warming of the Arctic,accompanied by glacier and sea ice melt,has significant consequences for the Earth’s climate,ecosystems,and economy.Black carbon(BC)deposition on snow and ice can trigger a significant reduction in snow albedo and accelerate melting of snow and ice in the Arctic.By reviewing the published literatures over the past decades,this work provides an overview of the progress in both the measurement and modeling of BC deposition and its impact on Arctic climate change.In summary,the maximum value of BC deposition appears in the western Russian Arctic(26 ng·g^(–1)),and the minimum value appears in Greenland(3 ng·g^(–1)).BC records in the Arctic ice core already peaked in 1920s and 1970s,and shows a regional difference between Greenland and Canadian Arctic.The different temporal variations of Arctic BC ice core records in different regions are closely related to the large variability of BC emissions and transportation processes across the Arctic region.Model simulations usually underestimate the concentration of BC in snow and ice by 2–3 times,and cannot accurately reflect the seasonal and regional changes in BC deposition.Wet deposition is the main removal mechanism of BC in the Arctic,and observations show different seasonal variations in BC wet deposition in Ny-Ålesund and Barrow.This discrepancy may result from varying contributions of anthropogenic and biomass burning(BB)emissions,given the strong influence by BC from BB emissions at Barrow.Arctic BC deposition significantly influences regional climate change in the Arctic,increasing fire activities in the Arctic have made BB source of Arctic BC more crucial.On average,BC in Arctic snow and ice causes an increase of+0.17 W·m^(–2)in radiative forcing and 8 Gt·a^(–1)in runoff in Greenland.As stressed in the latest Arctic Monitoring and Assessment Programme report,reliable source information and long-term and high-resolution observations on Arctic BC deposition will be crucial for a more comprehensive understanding and a better mitigation strategy of Arctic BC.In the future,it is necessary to collect more observations on BC deposition and the corresponding physical processes(e.g.,snow/ice melting,surface energy balance)in the Arctic to provide reliable data for understanding and clarifying the mechanism of the climatic impacts of BC deposition on Arctic snow and ice.
基金supported by the second Tibetan Plateau Scientific Expedition and Research Program(2019QZKK0605)the National Science Foundation of China(42271132)+1 种基金Longyuan Youth Innovative Program of Gansu Provincethe Fundamental Research Funds for the Central Universities(lzujbky-2021-74)。
文摘Black carbon(BC)in snow plays an important role to accelerate snow melting.However,current studies mostly focused on BC concentrations,few on their size distributions in snow which affected BC’s effect on albedo changes.Here we presented refractory BC(rBC)concentrations and size distributions in snow collected from Chinese Altai Mountains in Central Asia from November 2016 to April 2017.The results revealed that the average rBC concentrations were 5.77 and2.82 ng g-1for the surface snow and sub-surface snow,which were relatively higher in the melting season(April)than that in winter(November-January).The mass median volume-equivalent diameter of rBC size in surface snow was approximately at 120-150 nm,which was typically smaller than that in the atmosphere(about 200 nm for urban atmosphere).However,there existed no specific mass median volume-equivalent diameter of BC size for sub-surface snow in winter.While during the melting season,the median mass size of rBC in sub-surface snow was similar to that in surface snow.Backward trajectories indicated that anthropogenic sourced BC dominated rBC in snow(70%-85%).This study will promote our understanding on BC size distributions in snow,and highlight the possible impact of BC size on climate effect.
基金National Natural Science Foundation of China(42275070)。
文摘Black carbon(BC)is the strongest visible-light-absorbing aerosol component in the atmosphere,with a sig-nificant impact on Earth’s radiative budget.Accurate measurement of BC light absorption is crucial for estimating its radiative effect.The micro-aethalometer model 200(MA200)by AethLabs,USA,offers high-time-resolution measurement of the multi-wavelength absorption coefficient(σ_(ab))within 1 s,making it widely used in aerial measurement due to its compact size and light weight.However,the reliability of the measuredσ_(ab) has not been extensively studied in previous research.In this study,we evaluate the performance of MA200 by comparingσ_(ab) measurements obtained from MA200 with those from the aethalometer model 33(AE33)by Magee,USA.Our results revealed a significant variation in the determinant coefficient(R 2)betweenσ_(ab) measurements from MA200 and AE33,depending on the time resolution.The R 2 increases from 0.1 to 0.5 and further to 0.97 as the time resolution of σ_(ab) increases from 1 s to 30 s and 60 s,respectively.We recommend a minimum time resolution of 30 s for stableσ_(ab) measurements using MA200.Moreover,we determineσ_(ab) from attenuation coefficient(σ_(ATN))measured by MA200 asσ_(ab)=(σ_(ATN)-σ_(0))/C_( MA),whereσ_(0 )ranges from-15.3 Mm-1 to-6.4 Mm-1 and C MA ranges from 2.65 to 3.21.Correcting the measuredσ_(ab) based on the findings of this study can provide reliable results for estimating the radiative effects of BC.
基金This research was sponsored by the National Key Program for Developing Basic Sciences of China(No.G1999043400)the National Natural Science Foundation of China(Grant Nos.40205016 and 40165001).
文摘As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the transport model of BC aerosols has also been established and combined with the RIEMS model. Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.
基金This work was supported by the Bureau of International Cooperation of the National Science Foundation of China(No.40311120114)the Bureau of International Cooperation of the Chinese Academy of Sciences(No.980491002)
文摘A study of the concentration of black carbon particles and its variation in the urban atmosphere has been carried out since 1996 in the Beijing area. The measurements were done in the late autumn and early winter each year, the period before and after domestic heating activities begin. The results show the presence of black carbon particles at the high level that vary over a large range in the urban atmosphere in Beijing. The mean value of daily average concentration for the whole observation period of 1996-2004 is 20.0 μgm^-3. An evident decrease of black carbon particle concentration in the Beijing area is observed after 2000, and the daily average concentration of black carbon particles is estimated to be 16.0 μgm^-3 with a variation range of 2.10-50.50 μgm^-3 for the period of 2000-2004. The observation method and main variation behavior characteristics of black carbon particles in the urban atmosphere in the Beijing area are given and discussed.
基金Supported by the National Natural Science Foundation of China (No. 40476038 and 40576039)
文摘This study investigates the distribution of black carbon (BC) and its correlation with total polycyclic aromatic hydrocarbons (EPAH) in the surface sediments of China's marginal seas. BC content ranges from 〈0.10 to 2.45 mg/g dw (grams dry weight) in the sediments studied, and varied among the different coastal regions. The Bohai Bay sediments had the highest BC contents (average 2.18 mg/g dw), which comprises a significant fraction (27%-41%) of the total organic carbon (TOC) preserved in the sediments. In comparison, BC in the surface sediments of the North Yellow Sea, Jiaozhou Bay, East China Sea and the South China Sea is less abundant and accounted for an average of 6%, 8%, 14% and 5%, respectively, of the sedimentary organic carbon pool. The concentration of EPAH in the surface sediments ranges from 41 to 3 667 ng/g dw and showed large spatial variations among the sampling sites of different costal regions. The Bohai Bay has the highest ZPAH values, ranging from 79 to 3 667 ng/g dw. This reflects the high anthropogenically contaminated nature of the sediments in the bay. BC is positively correlated to TOC but a strong correlation is not found between BC and ZPAH in the surface sediments studied, suggesting that BC and PAHs preserved in the sediments are derived from different sources and controlled by different biogeochemical processes. Our study suggests that the abundance of BC preserved in the sediments could represent a significant sink pool of carbon cycling in China's marginal seas.
基金supported by the National Natural Science Foundation of China (41261074)the Foundation of Educational Department of Jiangxi Province, China (GJJ12605)
文摘The present study aims to understand the effects of long-term fertilization on soil organic carbon (SOC), black carbon (BC), enzyme activity, and the relationships among these parameters. Paddy field was continuously fertilized over 30 yr with nine different fertilizer treatments including N, P, K, NP, NK, NPK, 2NPK (two-fold NPK), NPK+manure (NPKM), and CK (no fertilization), N, 90 kg urea-N ha^-1 yr^-1; P, 45 kg triple superphosphate-P205 ha^-1 yr^-1; K, 75 kg potassium chloride-K20 ha^-1 yr^-1; and pig manure, 22 500 kg ha^-1 yr^-1. Soil samples were collected and determined for SOC, BC content, and enzyme activity. The results showed that the SOC in the NPKM treatment was significantly higher than those in the K, P, and CK treatments. The lowest SOC content was found in the CK treatment. SOC content was similar in the N, NP, NK, NPK, 2NPK, and NPKM treatments. There was no significant difference in BC content among different treatments. The BC-to-SOC ratios (BC/SOC) ranged from 0.50 to 0.63, suggesting that BC might originate from the same source. Regarding enzyme activity, NPK treatment had higher urease activity than NPKM treatment. The urease activity of NPKM treatment was significantly higher than that of 2NPK, NP, N, P, K, CK, and NPKM treatment which produced higher activities of acid phosphatase, catalase, and invertase than all other treatments. Our results indicated that long-term fertilization did not significantly affect BC content. Concurrent application of manure and mineral fertilizers increased SOC content and significantly enhanced soil enzyme activities. Correlation analysis showed that catalase activity was significantly associated with invertase activity, but SOC, BC, and enzyme activity levels were not significantly correlated with one another. No significant correlations were observed between BC and soil enzymes. It is unknown whether soil enzymes play a role in the decomposition of BC.
基金supported by the National Basic Research Program of China (Grant Nos. 2010CB955608 and 2011CB403405)the Public Meteorology Special Foundation of MOST (Grant No.GYHY200906020)
文摘The radiative forcing and climate response due to black carbon(BC) in snow and/or ice were investigated by integrating observed effects of BC on snow/ice albedo into an atmospheric general circulation model(BCC AGCM2.0.1) developed by the National Climate Center(NCC) of the China Meteorological Administration(CMA).The results show that the global annual mean surface radiative forcing due to BC in snow/ice is +0.042 W m 2,with maximum forcing found over the Tibetan Plateau and regional mean forcing exceeding +2.8 W m 2.The global annual mean surface temperature increased 0.071 C due to BC in snow/ice.Positive surface radiative forcing was clearly shown in winter and spring and increased the surface temperature of snow/ice in the Northern Hemisphere.The surface temperatures of snow-covered areas of Eurasia and North America in winter(spring) increased by 0.83 C(0.6 C) and 0.83 C(0.46 C),respectively.Snowmelt rates also increased greatly,leading to earlier snowmelt and peak runoff times.With the rise of surface temperatures in the Arctic,more water vapor could be released into the atmosphere,allowing easier cloud formation,which could lead to higher thermal emittance in the Arctic.However,the total cloud forcing could decrease due to increasing cloud cover,which will offset some of the positive feedback mechanism of the clouds.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant KZCX2-YW-205)the National Natural Science Foundation of China (Grant Nos.40825016,90711004,and 40775083)
文摘In this study the authors apply the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to examine the impacts of black carbon (BC)-induced changes in snow albedo on simulated temperature and precipitation during the severe snowstorm that occurred in southern China during 0800 26 January to 0800 29 January 2008 (Note that all times are local time except when otherwise stated). Black carbon aerosol was simulated online within the WRF-Chem. The model resuits showed that surface-albedo, averaged over 27-28 January, can be reduced by up to 10% by the deposition of BC. As a result, relative to a simulation that does not consider deposition of BC on snow/ice, the authors predicted surface air temperatures during 27-28 January can differ by -1.95 to 2.70 K, and the authors predicted accumulated precipitation over 27-28 January can differ by -2.91 to 3.10 mm over Areas A and B with large BC deposition. Different signs of changes are determined by the feedback of clouds and by the availability of water vapor in the atmosphere.
基金supported by special projects of China Meteorological Administration(GYHY201006022)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA05090406)
文摘The remote response of the East Asian summer monsoon (EASM) to European black carbon (EUBC) aerosols was studied by using an ensemble of sensitivity experiments with the Geophysical Fluid Dynamics Laboratory (GFDL) atmospheric general circulation model (AGCM) Atmospheric Model version 2.1 (AM2.1).The results show that EUBC causes an enhanced EASM.The resulted enhanced southwesterly brings more moisture supply from the Bay of Bengal,which causes an increase in precipitation over the Yangtze River valley,northeastem China,the eastern part of the Yellow River valley,and the Tibetan Plateau.Diagnostic examination suggests that EUBC induces enhanced tropospheric heating over most of the Eurasian Continent through a propagating wave train and horizontal air temperature advection.This phenomenon results in intensified thermal contrast between land and ocean,which accounts for the enhanced EASM.Moreover,reductions in EUBC emission in 1992 may have contributed to decadal weakening of the EASM in the early 1990s.
基金supported by the National Basic Research Program of China (973 Program, Grant No. 2014CB441202)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100503)
文摘The authors quantify the radiative effect of black carbon (BC) on simulated aerosol concentrations during the heavily polluted haze event of 11-14 January 2013 in northern China using the chemistry version of the Weather Research and Forecasting Model (WRF-Chem). As a result of the stable synoptic conditions, simulated concentrations of BC and PM2.5 averaged over the study period were about 8-16 μg m-3 and 80-100 μg m-3, respectively, in the control simulation (CTRL). When BC emissions were doubled (2BC), tripled (3BC), and quad- rupled (4BC) relative to the CTRL run, the simulated concentrations of aerosols in different regions showed distinct changes. The radiative effect of BC was simulated to increase concentrations of aerosols over Tianjin (Doml) and southern Henan (Dora3), but to decrease in southern Hebei (Dora2). Relative to the CTRL simulation, concen- trations of PM2s over Doml, Dom2, and Dom3 were simulated in 4BC to change by +18.6 1μg m-3 (+32.3%), -5.7 μg m 3 (-7.3%), and +7.2 μg m3 (+12.6%), respec- tively. The BC-induced increases in aerosol concentra- tions corresponded mainly to the reductions in planetary boundary layer height over Doml and Dom3. The reduc- tions of aerosol concentrations in Dora2 were mainly caused by the weakened wind convergence at 850 hPa and reduced concentrations of sulfate and nitrate associ- ated with the reduced surface-layer ozone levels and rela- tive humidity.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956004)the Fundamental Research Funds for the Central Universities(No.16lgjc22)
文摘Black carbon(BC)has received increasing attention in the last 20 years because it is not only an absorbent of toxic pollutants but also a greenhouse substance,preserving fire-history records,and more importantly,acting as an indicator of biogeochemical cycles and global changes.By adopting an improved chemothermal oxidation method(WXY),this study reconstructed the century-scale high-resolution records of BC deposition from two fine-grained sediment cores collected from the Yellow Sea Cold Water Mass in the South Yellow Sea.The BC records were divided into five stages,which exhibited specific sequences with three BC peaks at approximately 1891,1921,and 2007 AD,representing times at which the first heavy storms appeared just after the termination of long-term droughts.The significant correlation between the times of the BC peaks in the cores and heavy storms in the area of the Huanghe(Yellow)River demonstrated that BC peaks could result from markedly strengthened sedimentation due to surface runof f,which augmented the atmospheric deposition.Stable carbon isotope analysis indicated that the evident increase in carbon isotope ratios of BC in Stage 5 might have resulted from the input of weathered rock-derived graphitic carbon cardinally induced by the annual anthropogenic modulation of water-borne sediment in the Huanghe River since 2005 AD.Numerical calculations demonstrated that the input fraction of graphitic carbon was 22.97% for Stage 5,whereas no graphitic carbon entered during Stages 1 and 3.The obtained data provide new and important understanding of the source-sink history of BC in the Yellow Sea.
基金supported by the National Key Research and Development Program of China[grant number2016YFC0202701]the Beijing Municipal Science and Technology Project[grant numbers D17110900150000 and Z171100000617002]
文摘Black carbon(BC)has a significant impact on air quality and atmospheric light absorption due to its unique physical properties.In this study,a ten-wavelength black carbon monitor was used to measure BC concentrations continuously during winter in urban Beijing.A comparison of BC concentrations was carried out between the ten-wavelength black carbon monitor and a multiangle absorption photometer(MAAP)and a thermal optical transmission method carbon analyzer.The results showed significant correlations between BC measured by the MAAP,the thermal optical transmission method carbon analyzer and BC measured at the 660 nm wavelength using the ten-wavelength black carbon monitor.Obvious differences in BC concentrations were recorded at the different wavelength ranges.The BC concentrations observed in the visible ranges,near-infrared ranges and near-ultraviolet ranges were on average 3.1,2.6,and 4.6μg m?3,respectively.The differences between the absorption coefficient of BC370 nm and BC880 nm increased with the enhancement of OC:TC(ratio of organic carbon to total carbon)and PM2.5,indicating that organic matter had strong light absorption at near-ultraviolet wavelength.BC concentrations had clear diurnal variations with maxima at 0300 and minima at 1400(Local time).In addition,potential contribution source areas of BC were also analyzed.This is the first time that BC measurements have been conducted using the ten-wavelength BC monitor,which provided more information of BC at different wavelengths compared to other methods.
基金a part of the Aerosol Radiative Forcing over India project of the Indian Space Research Organization’s Geosphere Biosphere Programme
文摘This study characterizes the black carbon in Agra, India home to the Taj Mahal--and situated in the lndo-Gangetic basin. The mean black carbon concentration is 9.5 μg m-3 and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter (December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate (1-2 m s-1) wind speed, as compared to calm or turbulent atmospheric conditions.
基金supported by the Knowledge Innovation Program of the Chinese Academy of Sciences(Grant No.KZCX2-YW-Q11-03)
文摘Two inter-decadal shifts in East China summer rainfall during the last three decades of the 20th century have been identified.One shift occurred in the late 1970s and featured more rainfall in the Yangtze River valley and prolonged drought in North China.The other shift occurred in the early 1990s and featured increased rainfall in South China.The role of black carbon(BC) aerosol in the first shift event is controversial,and it has not been documented for the second event.In this study,the authors used Geophysical Fluid Dynamics Laboratory's(GFDL's) atmospheric general circulation model known as Atmosphere and Land Model(AM2.1) ,which has been shown to capture East Asian climate variability well,to investigate these issues by conducting sensitive experiments with or without historical BC in East Asia. The results suggest that the model reproduces the first shift well,including intensified rainfall in the Yangtze River and weakened monsoonal circulation.However,the model captures only a fraction of the observed variations for the second shift event.Thus,the role of BC in modulating the two shift events is different,and its impact is relatively less important for the early 1990s event.
基金Project supported by the Natural Science Foundation of Shandong Province (No.Y2003B04).
文摘Black carbon (BC) can strongly adsorb hydrophobic organic compounds (HOCs). The HOC sorption to coated BC could be attenuated in soil and sediment compared with that of the parent BC. To study the potential causes of the sorption attenuation, humic acid (HA) and BC were isolated. Phenanthrene (PHE) was selected as the representative of HOCs. BC was coated with the precipitated HA. The PHE sorption to the HA-coated BC was determined. The HA coatings on BC could result in the significant sorption attenuation of PHE to BC. The attenuation varied in different HA origin and was positively correlated to the aromaticity of HA. The attenuation could be explained by the direct competition between HA and PHE for the available sorption sites on BC and the reduction of the available sorption sites as a result of the pore blockage of BC caused by the HA coatings. Therefore, the HA coatings on BC was one potential cause of the attenuation of HOC sorption to BC in soil and sediment.
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956004)the Fundamental Research Funds for the Central Universities(No.16lgjc22)
文摘Understanding global carbon cycle is critical to uncover the mechanisms of global warming and remediate its adverse ef fects on human activities.Organic carbon in marine sediments is an indispensable part of the global carbon reservoir in global carbon cycling.Evaluating such a reservoir calls for quantitative studies of marine carbon burial,which closely depend on quantifying total organic carbon and black carbon in marine sediment cores and subsequently on obtaining their high-resolution temporal sequences.However,the conventional methods for detecting the contents of total organic carbon or black carbon cannot resolve the following specific difficulties,i.e.,(1)a very limited amount of each subsample versus the diverse analytical items,(2) a low and fluctuating recovery rate of total organic carbon or black carbon versus the reproducibility of carbon data,and(3)a large number of subsamples versus the rapid batch measurements.In this work,(i)adopting the customized disposable ceramic crucibles with the microporecontrolled ability,(ii)developing self-made or customized facilities for the procedures of acidification and chemothermal oxidization,and(iii)optimizing procedures and carbon-sulfur analyzer,we have built a novel Wang-Xu-Yuan method(the WXY method)for measuring the contents of total organic carbon or black carbon in marine sediment cores,which includes the procedures of pretreatment,weighing,acidification,chemothermal oxidation and quantification;and can fully meet the requirements of establishing their highresolution temporal sequences,whatever in the recovery,experimental efficiency,accuracy and reliability of the measurements,and homogeneity of samples.In particular,the usage of disposable ceramic crucibles leads to evidently simplify the experimental scenario,which further results in the very high recovery rates for total organic carbon and black carbon.This new technique may provide a significant support for revealing the mechanism of carbon burial and evaluating the capacity of marine carbon accumulation and sequestration.
基金This work was supported by grants from the National Key Research and Development Program of China(Grant No.2017YFC0210003)the National Natural Science Foundation of China(Grant No.42075177)the Qing Lan Project.
文摘Black carbon(BC)reduces the photolysis coefficient by absorbing solar radiation,thereby affecting the concentration of ozone(O_(3))near the ground.The influence of BC on O_(3)has thus received much attention.In this study,Mie scattering and the tropospheric Ultraviolet and Visible radiation model are used to analyze the effect of BC optical properties on radiation.Combined with data of O_(3)precursors in Nanjing in 2014,an EKMA curve is drawn,and the variations in O_(3)concentration are further investigated using a zero-dimensional box mechanism model(NCAR MM).When O_(3)precursors are unchanged,radiation and O_(3)show a highly similar tendency in response to changing BC optical properties(R=0.997).With the increase of modal radius,the attenuation of fresh BC to radiation and O_(3)first trends upward before decreasing.In the mixing process,the attenuation of BC to radiation and O_(3)presents an upward tendency with the increase of relative humidity but decreases rapidly before increasing slowly with increasing thickness of coating.In addition,mass concentration is another major factor.When the BC to PM_(2.5)ratio increases to 5%in Nanjing,the radiation decreases by approximately 0.13%-3.71%while O_(3)decreases by approximately 8.13%-13.11%.The radiative effect of BC not only reduces O_(3)concentration but also changes the EKMA curve.Compared with the NO_(x)control area,radiation has a significant influence on the VOCs control area.When aerosol optical depth(AOD)increases by 17.15%,the NO_(x)to VOCs ratio decreases by 8.27%,and part of the original NO_(x)control area is transferred to the VOCs control area.
基金supported by the Department of Civil and Environmental of the Universidad de la Costathe Center for Environmental Technology Research(Centro de Investigación de Tecnologías Ambientales–CITA)+1 种基金the Environmental Management and Sustainability Research Group(Grupo de Investigación de Gestión y Sostenibilidad Ambiental–GESSA)partial financial support from Colciencias Colombia(Project 141180764164,Contract 815-2018)。
文摘Black carbon(BC)is one of the short-lived air pollutants that contributes significantly to aerosol radiative forcing and global climate change.It is emitted by the incomplete combustion of fossil fuels,biofuels,and biomass.Urban environments are quite complex and thus,the use of mobile jointly with fixed monitoring provides a better understanding of the dynamics of BC distribution in such areas.The present study addresses the measurement of BC concentration using real-time mobile and ambient monitoring in Barranquilla,an industrialized urban area of the Colombian Caribbean.A microaethalometer(MA200)and an aethalometer(AE33)were used for measuring the BC concentration.The absorption Ångström exponent(AAE)values were determined for the study area,for identifying the BC emission sources.The results of the ambient sampling show that vehicle traffic emissions prevail;however,the influence of biomass burning was also observed.The mean ambient BC concentration was found to be 1.04±1.03μg/m^(3) and varied between 0.5 and 4.0μg/m^(3).From the mobile measurements obtained in real traffic conditions on the road,a much higher average value of 16.1±16.5μg/m^(3) was measured.Many parts of the city showed BC concentrations higher than 20μg/m^(3).The spatial distribution of BC concentration shows that vehicle emissions and traffic jams,a consequence of road and transport infrastructure,are the factors that most affect the BC concentration.A comparison of results obtained from two aethalometers indicates that the concentrations measured by MA200 are 9%lower than those measured by AE33.The AAE obtained was found to vary between 1.1 and 1.6,indicating vehicular emissions as the most crucial source.In addition,it was observed that the BC concentration on working days was 2.5 times higher than on the weekends in the case of mobile monitoring and 1.5 times higher in the case of ambient monitoring.
基金supported by the National Natural Science Foundation of China(51708327 and 51978404)。
文摘Black carbon(BC)is considered the second largest anthropogenic climate forcer,but the radiative effects of BC are highly correlated with its combustion sources.On-road vehicles are an important source of anthropogenic BC.However,there are major uncertainties in the estimates of the BC emissions from on-road light-duty passenger vehicles(LDPVs),and results obtained with the portable emissions measurement system(PEMS)method are particularly lacking.We developed a PEMS platform and evaluated the on-road BC emissions from ten in-use LDPVs.We demonstrated that the BC emission factors(EFs)of gasoline direction injection(GDI)engine vehicles range from 1.10 to 1.56 mg.km^(-1),which are higher than the EFs of port fuel injection(PFI)engine vehicles(0.10–0.17 mg.km^(-1))by a factor of 11.The BC emissions during the cold-start phase contributed 2%–33%to the total emissions.A strong correlation(R^(2)=0.70)was observed between the relative BC EFs and average vehicle speed,indicating that traffic congestion alleviation could effectively mitigate BC emissions.Moreover,BC and particle number(PN)emissions were linearly correlated(R^(2)=0.90),and compared to PFI engine vehicles,the instantaneous PN-to-BC emission rates of GDI engine vehicles were less sensitive to vehicle specific power-to-velocity(VSPV)increase in all speed ranges.