期刊文献+
共找到832篇文章
< 1 2 42 >
每页显示 20 50 100
Foreign Object Damage to Fan Rotor Blades of Aeroengine Part II: Numerical Simulation of Bird Impact 被引量:8
1
作者 关玉璞 赵振华 +1 位作者 陈伟 高德平 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2008年第4期328-334,共7页
Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistanc... Bird impact is one of the most dangerous threats to flight safety. The consequences of bird impact can be severe and, therefore, the aircraft components have to be certified for a proven level of bird impact resistance before being put into service. The fan rotor blades of aeroengine are the components being easily impacted by birds. It is necessary to ensure that the fan rotor blades should have adequate resistance against the bird impact, to reduce the flying accidents caused by bird impacts. Using the contacting-impacting algorithm, the numerical simulation is carded out to simulate bird impact. A three-blade computational model is set up for the fan rotor blade having shrouds. The transient response curves of the points corresponding to measured points in experiments, displacements and equivalent stresses on the blades are obtained during the simulation. From the comparison of the transient response curves obtained from numerical simulation with that obtained from experiments, it can be found that the variations in measured points and the corresponding points of simulation are basically the same. The deforming process, the maximum displacements and the maximum equivalent stresses on blades are analyzed. The numerical simulation verifies and complements the experiment results. 展开更多
关键词 aerospace propulsion system bird impact numerical simulation fan rotor blade transient response
下载PDF
Foreign Object Damage to Fan Rotor Blades of Aeroengine Part I:Experimental Study of Bird Impact 被引量:14
2
作者 关玉璞 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期408-414,共7页
The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blade... The conditions of experiment for bird impact to blades have been improved. The experiment of bird impact to the fan rotor blades of an aeroengine is carried out. Through analyzing the transient state response of blades impacted by bird and the change of blade profile before and after the impact, the anti-bird impact performance of blades in the first fan rotor is verified. The basis of anti-foreign object damage design for the fan rotor blades of an aeroengine is provided. 展开更多
关键词 aerospace propulsion system bird impact experiment fan rotor blade transient response
下载PDF
Study of modeling unsteady blade row interaction in a transonic compressor stage part 2:influence of deterministic correlations on time-averaged flow prediction 被引量:3
3
作者 Yang-Wei Liu Bao-Jie Liu Li-Peng Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期291-299,共9页
The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multistage compressors in steady state environment by introducing... The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multistage compressors in steady state environment by introducing de- terministic correlations (DC) that need to be modeled to close the equation system. The primary purpose of this study was to provide insight into the DC characteristics and the in- fluence of DC on the time-averaged flow field of the APES. In Part 2 of this two-part paper, the influence of DC on the time-averaged flow field was systematically studied; Several time-averaging computations boundary conditions and DC were conducted with various for the downstream stator in a transonic compressor stage, by employing the CFD solver developed in Part 1 of this two-part paper. These results were compared with the time-averaged unsteady flow field and the steady one. The study indicat;d that the circumferential- averaged DC can take into account major part of the unsteady effects on spanwise redistribution of flow fields in compres- sors. Furthermore, it demonstrated that both deterministic stresses and deterministic enthalpy fluxes are necessary to reproduce the time-averaged flow field. 展开更多
关键词 UNSTEADY blade row interaction Compressor Deterministic correlation Average-passage equation system CFD
下载PDF
Study on Strength and Life of Anisotropic Single Crystal Blade - Part Ⅱ: Experimental Research 被引量:4
4
作者 尹泽勇 成晓鸣 +2 位作者 杨治国 岳珠峰 魏朋义 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2001年第1期24-29,共6页
The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the s... The single crystal blade is one of the key technologies for improving the performance, durability and reliability of aero-engines and ground gas-turbine engines. However, the anisotropic mechanical properties of the single crystal material makes a great deal of difficulties on the development and the application of the single crystal blade, which is a challenge for the engineering application of the single crystal superalloy and the theoretic bases of the application. Some researches on the strength analysis and the life prediction of the anisotropic single crystal blade were carried out by the authors' research team. They are as follows. The crystallographic constitutive models for the plastic and the creep behaviors and the method of the rupture life prediction were established and verified. The tensile or the creep experiments for DD3 single crystal alloy with different orientations under different temperatures and different tensile rates or under different temperatures and different stress levels were carried out. The experimental data and the anisotropic properties at intermediate and high temperatures revealed by the experiments are significant for the application of the single crystal alloy. In addition, the experimental research for a kind of single crystal blade was also made. As the application of the researches the strength analysis and the life prediction were carried out for the single crystal blade of a certain aeroengine. In this part, the experimental research work is describled, and the constitutive models and applications have been described in part I. 展开更多
关键词 single crystal superalloy mechanical properties simulated single crystal blade EXPERIMENT
下载PDF
3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller 被引量:5
5
作者 LIU Houlin WANG Kai +3 位作者 YUAN Shouqi TAN Minggao WANG Yong RU Weimin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期491-497,共7页
The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at ... The double blade pump is widely used in sewage treatment industry,however,the research on the internal flow characteristics of the double blade pump with particle image velocimetry(PIV) technology is very little at present.To reveal inner flow characteristics in double blade pump impeller under off-design and design conditions,inner flows in a double blade pump impeller,whose specific speed is 111,are measured under the five off-design conditions and design condition by using 3D PIV test technology.In order to ensure the accuracy of the 3D PIV test,the external trigger synchronization system which makes use of fiber optic and equivalent calibration method are applied.The 3D PIV relative velocity synthesis procedure is compiled by using Visual C++ 2005.Then absolute velocity distribution and relative velocity distribution in the double blade pump impeller are obtained.Test results show that vortex exists in each condition,but the location,size and velocity of vortex core are different.Average absolute velocity value of impeller outlet increases at first,then decreases,and then increases again with increase of flow rate.Again average relative velocity values under 0.4,0.8,and 1.2 design condition are higher than that under 1.0 design condition,while under 0.6 and 1.4 design condition it is lower.Under low flow rate conditions,radial vectors of absolute velocities at impeller outlet and blade inlet near the pump shaft decrease with increase of flow rate,while that of relative velocities at the suction side near the pump shaft decreases.Radial vectors of absolute velocities and relative velocities change slightly under the two large flow rate conditions.The research results can be applied to instruct the hydraulic optimization design of double blade pumps. 展开更多
关键词 double blade pump IMPELLER inner flow 3D particle image velocimetry(PIV) test
下载PDF
Study of modeling unsteady blade row interaction in a transonic compressor stage part 1:code development and deterministic correlation analysis 被引量:5
6
作者 Yang-Wei Liu Bao-Jie Liu Li-Peng Lu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第2期281-290,共10页
The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multi- stage compressors in steady state environment by introduc-... The average-passage equation system (APES) provides a rigorous mathematical framework for account- ing for the unsteady blade row interaction through multi- stage compressors in steady state environment by introduc- ing deterministic correlations (DC) that need to be modeled to close the equation system. The primary purpose of this study is to provide insight into the DC characteristics and the influence of DC on the time-averaged flow field of the APES. In Part 1 of this two-part paper, firstly a 3D viscous unsteady and time-averaging flow CFD solver is developed to investi- gate the APES technique. Then steady and unsteady simu- lations are conducted in a transonic compressor stage. The results from both simulations are compared to highlight the significance of the unsteady interactions. Furthermore, the distribution characteristics of DC are studied and the DC at the rotor/stator interface are compared with their spatial cor- relations (SC). Lastly, steady and time-averaging (employing APES with DC) simulations for the downstream stator alone are conducted employing DC derived from the unsteady re- suits. The results from steady and time-averaging simula- tions are compared with the time-averaged unsteady results. The comparisons demonstrate that the simulation employing APES with DC can reproduce the time-averaged field and the 3D viscous time-averaging flow solver is validated. 展开更多
关键词 UNSTEADY blade row interaction Compressor.Deterministic correlation. Average-passage equation system~ CFD
下载PDF
Theoretical and Numerical Analysis of the Mechanical Erosion in Steam Turbine Blades. Part I 被引量:1
7
作者 F. Rueda Martínez M. Toledo Velázquez +3 位作者 A. A. Rueda Martínez F. Sánchez Silva S. Alcántara Montes O. M. Huerta Chávez 《Energy and Power Engineering》 2011年第3期227-237,共11页
The methodology of calculation of the velocity distribution for the stream frictionless and the drops in the flow line, on the basis of the frictionless, two-dimensional, stationary, transonic and homogenous flow is e... The methodology of calculation of the velocity distribution for the stream frictionless and the drops in the flow line, on the basis of the frictionless, two-dimensional, stationary, transonic and homogenous flow is established. The knowledge of conditions that govern the low pressure section of steam turbines in the last stage to have an approximate movement of the droplets in the blade cascades and the accumulation of droplets on the stator blades, flowing through the steam, is presented. This study is used for developing a code in Fortran about the velocity distribution in the output of stator blades that have flow conditions of wet steam, in order to understand the causes that originate the erosion on the blades of the last stages in the low pressure section of steam turbines. 展开更多
关键词 Steam TURBINE DROP Distribution EROSION Stator-Rotor blade TRANSONIC Flow
下载PDF
Mechanism of internal thermal runaway propagation in blade batteries 被引量:3
8
作者 Xuning Feng Fangshu Zhang +3 位作者 Wensheng Huang Yong Peng Chengshan Xu Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期184-194,I0005,共12页
Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propaga... Blade batteries are extensively used in electric vehicles,but unavoidable thermal runaway is an inherent threat to their safe use.This study experimentally investigated the mechanism underlying thermal runaway propagation within a blade battery by using a nail to trigger thermal runaway and thermocouples to track its propagation inside a cell.The results showed that the internal thermal runaway could propagate for up to 272 s,which is comparable to that of a traditional battery module.The velocity of the thermal runaway propagation fluctuated between 1 and 8 mm s^(-1),depending on both the electrolyte content and high-temperature gas diffusion.In the early stages of thermal runaway,the electrolyte participated in the reaction,which intensified the thermal runaway and accelerated its propagation.As the battery temperature increased,the electrolyte evaporated,which attenuated the acceleration effect.Gas diffusion affected thermal runaway propagation through both heat transfer and mass transfer.The experimental results indicated that gas diffusion accelerated the velocity of thermal runaway propagation by 36.84%.We used a 1D mathematical model and confirmed that convective heat transfer induced by gas diffusion increased the velocity of thermal runaway propagation by 5.46%-17.06%.Finally,the temperature rate curve was analyzed,and a three-stage mechanism for internal thermal runaway propagation was proposed.In Stage I,convective heat transfer from electrolyte evaporation locally increased the temperature to 100℃.In Stage II,solid heat transfer locally increases the temperature to trigger thermal runaway.In StageⅢ,thermal runaway sharply increases the local temperature.The proposed mechanism sheds light on the internal thermal runaway propagation of blade batteries and offers valuable insights into safety considerations for future design. 展开更多
关键词 Lithium-ion battery blade battery Thermal runaway Internal thermal runaway propagation
下载PDF
Diagnostic accuracy of the tongue blade test combined with clinical signs to detect maxillary and mandibular fractures in the emergency department
9
作者 Jee Yen Kuck Abdul Muhaimin Noor Azhar +1 位作者 Neena Wee Rishya Manikam 《World Journal of Emergency Medicine》 SCIE CAS CSCD 2023年第2期122-127,共6页
BACKGROUND: To evaluate the diagnostic accuracy of clinical signs combined with the tongue blade test(TBT) to detect maxillary and mandibular fractures.METHODS: A cross-sectional study enrolled patients with maxillary... BACKGROUND: To evaluate the diagnostic accuracy of clinical signs combined with the tongue blade test(TBT) to detect maxillary and mandibular fractures.METHODS: A cross-sectional study enrolled patients with maxillary and mandibular injuries in the emergency department. Physical examination and the TBT were performed, followed by radiological imaging(facial X-ray or computed tomography [CT]). The diagnostic accuracy was calculated for individuals and a combination of clinical findings at predicting maxillary and mandibular fractures.RESULTS: A total of 98 patients were identified, of whom 31.6% had maxillary fractures and9.2% had mandibular fractures. The combination of malocclusion, tenderness on palpation and swelling with positive TBT had 100% specificity to detect maxillary and mandibular fractures. In the absence of malocclusion, the combination of tenderness on palpation and swelling with positive TBT produced a specificity of 97.8% for maxillary fracture and a specificity of 96.2% for mandibular fracture. A clinical decision tool consisting of malocclusion, tenderness on palpation, swelling and TBT revealed a specificity of 100% and a positive predictive value of 100%.CONCLUSION: The clinical decision tool is potentially useful to rule out mandibular fractures,thus preventing unnecessary radiation exposure. 展开更多
关键词 Maxillary fractures Mandibular fractures Tongue blade test Diagnostic accuracy Clinical decision tool Emergency department
下载PDF
Theoretical and Numerical Analysis of the Mechanical Erosion in Steam Turbine Blades. Part II
10
作者 F. Rueda Martínez M. Toledo Velázquez +4 位作者 J. Abugaber Francis A. A. Rueda Martínez I. Carvajal Mariscal J. A. Ortega Herrera G. Polupan 《Energy and Power Engineering》 2011年第3期238-245,共8页
In the low pressure section of the steam turbines the damages are pronounced becoming remarkable in all the stages, since the generation of water liquid microparticles implies the impact on the blades having majors pr... In the low pressure section of the steam turbines the damages are pronounced becoming remarkable in all the stages, since the generation of water liquid microparticles implies the impact on the blades having majors problems of erosion in the last stages by the increase of the humidity. In the first part of this work, the calculation presented of the transonic velocity field for the stream frictionless and the drops in the flow line, on the basis of the frictionless, two-dimensional, stationary, transonic and homogenous flow, give an approximate movement of the droplets and its accumulation on the stator blades, flowing through the steam. In order to understand the causes that originate the erosion on the blades of the last stages in low pressure section of steam turbines, the previous procedure is developed in a code in Fortran and the obtained results of velocity distribution in the output of blades that have flow conditions of wet steam are presented. 展开更多
关键词 Numerical Code MESH blade EROSION blade STEAM TURBINE DROP Distribution
下载PDF
A Hybrid Model Based on Back-Propagation Neural Network and Optimized Support Vector Machine with Particle Swarm Algorithm for Assessing Blade Icing on Wind Turbines
11
作者 Xiyang Li Bin Cheng +2 位作者 Hui Zhang Xianghan Zhang Zhi Yun 《Energy Engineering》 EI 2021年第6期1869-1886,共18页
With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consi... With the continuous increase in the proportional use of wind energy across the globe,the reduction of power generation efficiency and safety hazards caused by the icing on wind turbine blades have attracted more consideration for research.Therefore,it is crucial to accurately analyze the thickness of icing on wind turbine blades,which can serve as a basis for formulating corresponding control measures and ensure a safe and stable operation of wind turbines in winter times and/or in high altitude areas.This paper fully utilized the advantages of the support vector machine(SVM)and back-propagation neural network(BPNN),with the incorporation of particle swarm optimization(PSO)algorithms to optimize the parameters of the SVM.The paper proposes a hybrid assessment model of PSO-SVM and BPNN based on dynamic weighting rules.Three sets of icing data under a rotating working state of the wind turbine were used as examples for model verification.Based on a comparative analysis with other models,the results showed that the proposed model has better accuracy and stability in analyzing the icing on wind turbine blades. 展开更多
关键词 Support vector machine back propagation neural network particle swarm optimization blade icing assessment
下载PDF
Numerical simulation on directional solidification and heat treatment processes of turbine blades
12
作者 Ye-yuan Hu Ju-huai Ma Qing-yan Xu 《China Foundry》 SCIE EI CAS CSCD 2024年第5期476-490,共15页
Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing ... Study on turbine blades is crucial due to their critical role in ensuring the efficient and reliable operation of aircraft engines.Nickel-based single crystal superalloys are extensively used in the hot manufacturing of turbine blades due to their exceptional high-temperature mechanical properties.The hot manufacturing of single crystal blades involves directional solidification and heat treatment.Experimental manufacturing of these blades is time-consuming,capital-intensive,and often insufficient to meet industrial demands.Numerical simulation techniques have gained widespread acceptance in blade manufacturing research due to their low energy consumption,high efficiency,and rapid turnaround time.This article introduces the modeling and simulation of hot manufacturing in single crystal blades.The discussion outlines the prevalent mathematical models employed in numerical simulations related to blade hot manufacturing.It encapsulates the advancements in research concerning macro to micro-level numerical simulation techniques for directional solidification and heat treatment processes.Furthermore,potential future trajectories for the numerical simulation of single crystal blade hot manufacturing are also discussed. 展开更多
关键词 single crystal blades Ni-based superalloy directional solidification heat treatment numerical simulation
下载PDF
Optimized Design of Bio-Inspired Wind Turbine Blades
13
作者 Yuanjun Dai Dong Wang +1 位作者 Xiongfei Liu Weimin Wu 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1647-1664,共18页
To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extracti... To enhance the aerodynamic performance of wind turbine blades,this study proposes the adoption of a bionic airfoil inspired by the aerodynamic shape of an eagle.Based on the blade element theory,a non-uniform extraction method of blade elements is employed for the optimization design of the considered wind turbine blades.Moreover,Computational Fluid Dynamics(CFD)is used to determine the aerodynamic performances of the eagle airfoil and a NACA2412 airfoil,thereby demonstrating the superior aerodynamic performance of the former.Finally,a mathematical model for optimizing the design of wind turbine blades is introduced and a comparative analysis is conducted with respect to the aerodynamic performances of blades designed using a uniform extraction approach.It is found that the blades designed using non-uniform extraction exhibit better aerodynamic performance. 展开更多
关键词 AIRFOIL wind turbines blade design CFD
下载PDF
Blade Wrap Angle Impact on Centrifugal Pump Performance:Entropy Generation and Fluid-Structure Interaction Analysis
14
作者 Hayder Kareem Sakran Mohd Sharizal Abdul Aziz Chu Yee Khor 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期109-137,共29页
The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to anal... The centrifugal pump is a prevalent power equipment widely used in different engineering patterns,and the impeller blade wrap angle significantly impacts its performance.A numerical investigation was conducted to analyze the influence of the blade wrap angle on flow characteristics and energy distribution of a centrifugal pump evaluated as a low specific speed with a value of 69.This study investigates six impellermodels that possess varying blade wrap angles(95°,105°,115°,125°,135°,and 145°)that were created while maintaining the same volute and other geometrical characteristics.The investigation of energy loss was conducted to evaluate the values of total and entropy generation rates(TEG,EGR).The fluid-structure interaction was considered numerically using the software tools ANSYS Fluent and ANSYSWorkbench.The elastic structural dynamic equation was used to estimate the structural response,while the shear stress transport k–ωturbulence model was utilized for the fluid domain modeling.The findings suggest that the blade wrap angle has a significant influence on the efficiency of the pump.The impeller featuring a blade wrap angle of 145°exhibits higher efficiency,with a notable increase of 3.76%relative to the original model.Variations in the blade wrap angle impact the energy loss,shaft power,and pump head.The model with a 145°angle exhibited a maximum equivalent stress of 14.8MPa and a total deformation of 0.084 mm.The results provide valuable insights into the intricate flow mechanism of the centrifugal pump,particularly when considering various blade wrap angles. 展开更多
关键词 Centrifugal pump blade wrap angle entropy generation theory fluid-structure interaction hydraulic performance
下载PDF
Research on Automatic Test System of Engine Blade Natural Frequency
15
作者 LU Yonghua LIU Jingjing +2 位作者 YANG Haibo HUANG Chuan MA Zhicheng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期476-487,共12页
Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequ... Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision. 展开更多
关键词 blade vibration failure natural frequency automatic test system
下载PDF
Influence of Blade Number on the Performance of Hydraulic Turbines in the Transition Stage
16
作者 Fengxia Shi Guangbiao Zhao +1 位作者 Yucai Tang Dedong Maand Xiangyun Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第11期2617-2636,共20页
To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The ins... To analyze the effect of blade number on the performance of hydraulic turbines during the transient stage in which theflow rate is not constant,six hydraulic turbines with different blade numbers are considered.The instantaneous hydraulic performance of the turbine and the pressure pulsation acting on the impeller are investigated numerically by using the ANSYS CFX software.The ensuing results are compared with the outcomes of experimental tests.It is shown that thefluctuation range of the pressure coefficient increases with time,but the corresponding range for the transient hydraulic efficiency decreases gradually when theflow velocity transits to larger values.During the transition to smallflow velocity,thefluctuation range of the pressure coefficient gradually decreases as time passes,but the correspondingfluctuation range of its transient hydraulic efficiency gradually becomes larger.Thefluctuation range in the Z9 case is small during the transition.The main frequency of transient hydraulic efficiency pulsation is equal to the blade frequency.At the main frequency,Z7 has the largest amplitude of the hydraulic efficiency pulsation,Z10 has the smallest amplitude,and the difference between Z7 and Z9 is limited.As the number of blades grows,the pressure pulsation during the transition process gradually decreases,but the pressure pulsation of Z10 at the volute tongue is larger.In the steady state,Z9 has the highest efficiency and in the transient stage,the pressure coefficientfluctuation range is small.Accordingly,for the hydraulic turbine Z9,the performance is optimal. 展开更多
关键词 Hydraulic turbine blade number transient process pressurefluctuation transient hydraulic performance
下载PDF
Research on the Icing Diagnosis ofWind Turbine Blades Based on FS–XGBoost–EWMA
17
作者 Jicai Guo Xiaowen Song +5 位作者 Chang Liu Yanfeng Zhang Shijie Guo JianxinWu Chang Cai Qing’an Li 《Energy Engineering》 EI 2024年第7期1739-1758,共20页
In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily re... In winter,wind turbines are susceptible to blade icing,which results in a series of energy losses and safe operation problems.Therefore,blade icing detection has become a top priority.Conventional methods primarily rely on sensor monitoring,which is expensive and has limited applications.Data-driven blade icing detection methods have become feasible with the development of artificial intelligence.However,the data-driven method is plagued by limited training samples and icing samples;therefore,this paper proposes an icing warning strategy based on the combination of feature selection(FS),eXtreme Gradient Boosting(XGBoost)algorithm,and exponentially weighted moving average(EWMA)analysis.In the training phase,FS is performed using correlation analysis to eliminate redundant features,and the XGBoost algorithm is applied to learn the hidden effective information in supervisory control and data acquisition analysis(SCADA)data to build a normal behavior model.In the online monitoring phase,an EWMA analysis is introduced to monitor the abnormal changes in features.A blade icing warning is issued when themonitored features continuously exceed the control limit,and the ambient temperature is below 0℃.This study uses data fromthree icing-affected wind turbines and one normally operating wind turbine for validation.The experimental results reveal that the strategy can promptly predict the icing trend among wind turbines and stably monitor the normally operating wind turbines. 展开更多
关键词 Wind turbine blade icing feature selection XGBoost EWMA
下载PDF
Assessment of Similitude Behavior in Natural Frequencies of Printed Turbine Blade
18
作者 MUHAMMAD Usman Safdar SHEN Xing EIMAN B.Saheby 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期488-501,共14页
Improving structures involves comparing old and new designs on a key parameter.Calculating the percent change in performance is a method to assess.This paper proposes a cost-effective analogy by generating replicas of... Improving structures involves comparing old and new designs on a key parameter.Calculating the percent change in performance is a method to assess.This paper proposes a cost-effective analogy by generating replicas of additive manufactured aluminum alloy(Al Si10Mg)body-centered cubic lattice(BCC)based turbine blade(T106C)with the same in poly-lactic acid(PLA)material and their comparison in the context of percent change for natural frequencies.Initially,a cavity is created inside the turbine blade(hollow blade).Natural frequencies are obtained experimentally and numerically by incorporating BCC at 50%and 80%of the cavity length into the hollow blade for both materials.The cost of manufacturing the metal blades is 90%more than that of the PLA blades.The two material blade designs show a similar percentage variation,as the first-order mode enhancs more than 5%and the second-order mode more than 4%.To observe the behavior in another material,both blades are analyzed numerically with a nickel-based U-500 material,and the same result is achieved,describing that percent change between designs can be verified using the PLA material. 展开更多
关键词 AlSi10Mg poly-lactic acid(PLA) U-500 T106C blade BCC lattice structure
下载PDF
Data-Driven Modeling for Wind Turbine Blade Loads Based on Deep Neural Network
19
作者 Jianyong Ao Yanping Li +2 位作者 Shengqing Hu Songyu Gao Qi Yao 《Energy Engineering》 EI 2024年第12期3825-3841,共17页
Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solv... Blades are essential components of wind turbines.Reducing their fatigue loads during operation helps to extend their lifespan,but it is difficult to quickly and accurately calculate the fatigue loads of blades.To solve this problem,this paper innovatively designs a data-driven blade load modeling method based on a deep learning framework through mechanism analysis,feature selection,and model construction.In the mechanism analysis part,the generation mechanism of blade loads and the load theoretical calculationmethod based on material damage theory are analyzed,and four measurable operating state parameters related to blade loads are screened;in the feature extraction part,15 characteristic indicators of each screened parameter are extracted in the time and frequency domain,and feature selection is completed through correlation analysis with blade loads to determine the input parameters of data-driven modeling;in the model construction part,a deep neural network based on feedforward and feedback propagation is designed to construct the nonlinear coupling relationship between the unit operating parameter characteristics and blade loads.The results show that the proposed method mines the wind turbine operating state characteristics highly correlated with the blade load,such as the standard deviation of wind speed.The model built using these characteristics has reasonable calculation and fitting capabilities for the blade load and shows a better fitting level for untrained out-of-sample data than the traditional scheme.Based on the mean absolute percentage error calculation,the modeling accuracy of the two blade loads can reach more than 90%and 80%,respectively,providing a good foundation for the subsequent optimization control to suppress the blade load. 展开更多
关键词 Wind turbine blade fatigue load modeling deep neural network
下载PDF
Effect of Rigid Pitch Motion on Flexible Vibration Characteristics of a Wind Turbine Blade
20
作者 Zhan Wang Liang Li +3 位作者 Long Wang Weidong Zhu Yinghui Li Echuan Yang 《Energy Engineering》 EI 2024年第10期2981-3000,共20页
Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these infl... Adynamic pitch strategy is usually adopted to improve the aerodynamic performance of the blade of awind turbine.The dynamic pitch motion will affect the linear vibration characteristics of the blade.However,these influences have not been studied in previous research.In this paper,the influences of the rigid pitch motion on the linear vibration characteristics of a wind turbine blade are studied.The blade is described as a rotating cantilever beam with an inherent coupled rigid-flexible vibration,where the rigid pitch motion introduces a parametrically excited vibration to the beam.Partial differential equations governing the nonlinear coupled pitch-bend vibration are proposed using the generalized Hamiltonian principle.Natural vibration characteristics of the inherent coupled rigid-flexible system are analyzed based on the combination of the assumed modes method and the multi-scales method.Effects of static pitch angle,rotating speed,and characteristics of harmonic pitch motion on flexible natural frequencies andmode shapes are discussed.It shows that the pitch amplitude has a dramatic influence on the natural frequencies of the blade,while the effects of pitch frequency and pith phase on natural frequencies are little. 展开更多
关键词 Pitch motion wind turbine blade inherent rigid-flexible coupling vibration characteristics
下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部