The blade root fatigue is one of important failure modes of turbocharger turbine for vehicle application,and the reliability and life of turbine with blade root fatigue failure mode are studied.Firstly,the stress char...The blade root fatigue is one of important failure modes of turbocharger turbine for vehicle application,and the reliability and life of turbine with blade root fatigue failure mode are studied.Firstly,the stress characteristics of turbine are analyzed,and based on the operating profile of turbocharger corresponding to the endurance test of engine,the stress spectrum of turbine with blade root fatigue failure mode is studied with the simulation method.Then,with the number of endurance test profile cycle as the life parameter,the reliability model and failure rate model of turbine with blade root fatigue failure mode are derived respectively. Finally,the rules that the reliability and failure rate of turbine with the blade root fatigue failure mode changes as life parameters are studied,and the life probabilistic characteristics of turbine are also studied.展开更多
Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surf...Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surface quality in terms of surface topography, subsurface microstructure,microhardness and residual stress obtained under different grinding conditions were evaluated comparatively. Experimental results indicated that the grinding force was influenced significantly by the competing predominance between the grinding parameters and the cross-sectional root workpiece profile. In addition, the root workpiece surface, including the root peak and valley regions, was produced with the large difference in surface quality due to the nonuniform grinding loads along the root workpiece profile in normal section. Detailed results showed that the surface roughness, subsurface plastic deformation and work hardening level of the root valley region were higher by up to25%, 20% and 7% in average than those obtained in the root peak region, respectively, in the current investigation. Finally, the superior parameters were recommended in the creep feed profile grinding of the fir-tree blade root forms. This study is helpful to provide industry guidance to optimize the machining process for the high-valued parts with complicated profiles.展开更多
To reduce the influence of adverse flow conditions at the fan hub and improve fan aerodynamic performance, a modification of conventional axial fan blades with numerical and experimental investigation is presented. Ho...To reduce the influence of adverse flow conditions at the fan hub and improve fan aerodynamic performance, a modification of conventional axial fan blades with numerical and experimental investigation is presented. Hollow blade root is manufactured near the hub. The numerical and experimental results show that hollow blade root has some effect on the static performance. Static pressure of the modified fan is generally the same with that of the datum fan, while, the efficiency curve of the modified fan has a different trend with that of the datum fan. The highest efficiency of the modified fan is 10% greater than that of the datum fan. The orthogonal experimental re- suits of fan noise show that hollow blade root is a feasible method of reducing fan noise, and the maximum value of noise reduction is about 2 dB. The factors affecting the noise reduction of hollow blade root are in the order of importance as follows: hollow blade margin, hollow blade height and hollow blade width. The much smoother pressure distribution of the modified fan than that of the datum fan is the main mechanism of noise reduction of hollow blade root. The research results will provide the proof of the parameter optimization and the structure de- sign for high performance and low noise small axial fans.展开更多
基金National Natural Science Foundation of China(No.51375465)
文摘The blade root fatigue is one of important failure modes of turbocharger turbine for vehicle application,and the reliability and life of turbine with blade root fatigue failure mode are studied.Firstly,the stress characteristics of turbine are analyzed,and based on the operating profile of turbocharger corresponding to the endurance test of engine,the stress spectrum of turbine with blade root fatigue failure mode is studied with the simulation method.Then,with the number of endurance test profile cycle as the life parameter,the reliability model and failure rate model of turbine with blade root fatigue failure mode are derived respectively. Finally,the rules that the reliability and failure rate of turbine with the blade root fatigue failure mode changes as life parameters are studied,and the life probabilistic characteristics of turbine are also studied.
基金financial support for this work by the National Natural Science Foundation of China (No. 51775275)the Funding of Jiangsu Innovation Program for Graduate Education of China (KYCX170245)+2 种基金the Funding for Outstanding Doctoral Dissertation in NUAA of China (BCXJ17-04)the Fundamental Research Funds for the Central University of China (No. NP2018110)the National Science and Technology Major Project and the Six Talents Summit Project in Jiangsu Province of China (No.JXQC-002)。
文摘Creep feed profile grinding of the fir-tree blade root forms of single crystal nickel-based superalloy was conducted using microcrystalline alumina abrasive wheels in the present study. The grinding force and the surface quality in terms of surface topography, subsurface microstructure,microhardness and residual stress obtained under different grinding conditions were evaluated comparatively. Experimental results indicated that the grinding force was influenced significantly by the competing predominance between the grinding parameters and the cross-sectional root workpiece profile. In addition, the root workpiece surface, including the root peak and valley regions, was produced with the large difference in surface quality due to the nonuniform grinding loads along the root workpiece profile in normal section. Detailed results showed that the surface roughness, subsurface plastic deformation and work hardening level of the root valley region were higher by up to25%, 20% and 7% in average than those obtained in the root peak region, respectively, in the current investigation. Finally, the superior parameters were recommended in the creep feed profile grinding of the fir-tree blade root forms. This study is helpful to provide industry guidance to optimize the machining process for the high-valued parts with complicated profiles.
基金supported by National Natural Science Foundation of China(No.51249003,No.51006090)Major Special Project of Technology Office in Zhejiang Province(No.2011C16038,No.2011C11073)
文摘To reduce the influence of adverse flow conditions at the fan hub and improve fan aerodynamic performance, a modification of conventional axial fan blades with numerical and experimental investigation is presented. Hollow blade root is manufactured near the hub. The numerical and experimental results show that hollow blade root has some effect on the static performance. Static pressure of the modified fan is generally the same with that of the datum fan, while, the efficiency curve of the modified fan has a different trend with that of the datum fan. The highest efficiency of the modified fan is 10% greater than that of the datum fan. The orthogonal experimental re- suits of fan noise show that hollow blade root is a feasible method of reducing fan noise, and the maximum value of noise reduction is about 2 dB. The factors affecting the noise reduction of hollow blade root are in the order of importance as follows: hollow blade margin, hollow blade height and hollow blade width. The much smoother pressure distribution of the modified fan than that of the datum fan is the main mechanism of noise reduction of hollow blade root. The research results will provide the proof of the parameter optimization and the structure de- sign for high performance and low noise small axial fans.